Synergistic modulation of neuroendocrine-inflammation pathway by microRNAs facilitates intertidal adaptation of molluscs
Chen, Hao2,5; Wang, Lin1; Wang, Lingling4; Zhang, Huan2,5; Wang, Hao2,5; Song, Linsheng3,4
刊名FISH & SHELLFISH IMMUNOLOGY
2023-11-01
卷号142页码:10
关键词Inflammation response Calmodulin Nitrite oxide Tumor necrosis factor miRNAs Aerial exposure
ISSN号1050-4648
DOI10.1016/j.fsi.2023.109165
通讯作者Wang, Lingling(wanglingling@dlou.edu.cn) ; Song, Linsheng(lshsong@dlou.edu.cn)
英文摘要Neuroendocrine-immune system is an evolution-conserved regulatory network in maintaining the homeostasis of animals. While knowledge on the roles of neuroendocrine-immune system in the disease and stress responses of organisms is growing, the ecological roles of neuroendocrine-immune system, especially how it shapes the unique lifestyle of organisms remain insufficiently investigated. As an endemic and dominant mollusc in intertidal region, oysters have evolved with a primitive neuroendocrine-immune system and with a sessile lifestyle. Recently, a novel neuroendocrine-immune pathway, Ca2+/calmodulin (CaM)-nitrite oxide synthase (NOS)/nitrite oxide (NO)-tumor necrosis factor (TNF) pathway, is identified in oysters and found altered dynamically during aerial exposure, one common but challenging stresses for intertidal organisms and a decisive factor shaping their habitat. Since the pathway proves fatal in prolonged aerial exposure, we hypothesized that the activation/deactivation of pathway could be strictly modulated in adaptation to the sessile lifestyle of oysters. Here, a synergistic modulation on the Ca2+/CaM-NOS/NO-TNF pathway by four members of miR-92 family and two oyster-specific miRNAs was identified, which further hallmarks the resilience and survival strategy of oysters to aerial exposure. Briefly, these six miRNAs were down-regulating CgCaM24243 post-transcriptionally and deactivating the pathway during the early-stage of stress. However, a robust recession of these miRNAs occurred at the late-stage of stress, resulting in the reactivation of pathway and overwhelming accumulation of cytokines. These results demonstrated a complicated interaction between miRNAs and ancient neuroendocrine-immune system, which facilitates the environmental adaptation of intertidal oysters and provides novel insight on the function and evolution of neuroendocrine-immune system in ecological context.
资助项目National Natural Science Foundation of China[41961124009] ; fund of CARS-49 ; fund for Outstanding Talents and Innovative Teams of Agricultural Scientific Research from MARA ; Key Research Program of Frontier Sciences[XLYC1902012] ; Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao)[ZDBS-LY-DQC032] ; innovation team of Aquaculture Environment Safety from Liaoning Province[2022QNLM030004] ; Dalian High Level Talent Innovation Support Program[LT202009] ; [2022RG14]
WOS关键词OYSTER CRASSOSTREA-GIGAS ; STRESS-RESPONSE ; INVERTEBRATES ; DESICCATION ; EXPRESSION ; HEMOCYTES ; TOLERANCE ; EXPOSURE ; IMMUNITY ; GENES
WOS研究方向Fisheries ; Immunology ; Marine & Freshwater Biology ; Veterinary Sciences
语种英语
出版者ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
WOS记录号WOS:001098527500001
内容类型期刊论文
源URL[http://ir.qdio.ac.cn/handle/337002/183888]  
专题海洋研究所_实验海洋生物学重点实验室
通讯作者Wang, Lingling; Song, Linsheng
作者单位1.Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Key Lab Sustainable Dev Marine Fisheries, Minist Agr & Rural Affairs, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Ctr Deep Sea Res, Qingdao 266071, Peoples R China
3.Laoshan Lab, Qingdao 266235, Peoples R China
4.Dalian Ocean Univ, Liaoning Key Lab Marine Anim Immunol & Dis Control, Dalian 116023, Peoples R China
5.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Expt Marine Biol, Qingdao 266071, Peoples R China
推荐引用方式
GB/T 7714
Chen, Hao,Wang, Lin,Wang, Lingling,et al. Synergistic modulation of neuroendocrine-inflammation pathway by microRNAs facilitates intertidal adaptation of molluscs[J]. FISH & SHELLFISH IMMUNOLOGY,2023,142:10.
APA Chen, Hao,Wang, Lin,Wang, Lingling,Zhang, Huan,Wang, Hao,&Song, Linsheng.(2023).Synergistic modulation of neuroendocrine-inflammation pathway by microRNAs facilitates intertidal adaptation of molluscs.FISH & SHELLFISH IMMUNOLOGY,142,10.
MLA Chen, Hao,et al."Synergistic modulation of neuroendocrine-inflammation pathway by microRNAs facilitates intertidal adaptation of molluscs".FISH & SHELLFISH IMMUNOLOGY 142(2023):10.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace