CORC  > 兰州理工大学  > 兰州理工大学  > 能源与动力工程学院
Research on inner flow and energy characteristics of air ejector for liquid-ring vacuum pump
Jiang, Lijie2; Zhang, Renhui1,2; Chen, Xuebing2; Guo, Rong1,2
刊名PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY
2022-06-01
关键词Liquid-ring pump ejector shock wave energy transfer entropy production hydraulic loss
ISSN号0957-6509
DOI10.1177/09576509221109675
英文摘要To analyze the complex flow characteristics, and reveal the mechanisms of energy transfer and hydraulic loss of the liquid-ring pump ejector. The numerical simulation and experiment were applied to analyze the complex shock wave structure, vortex evolution characteristics in the ejector and its influence on hydraulic performance, which provides a novelty reference for the optimization design of the ejector. Furthermore, novelty is expressed in the performance analysis of the ejector based on the performance of its matching liquid-ring pump. The results show that the lambda-shock wave and Mach disk are formed inside the nozzle under the action of supersonic jet, and the triple point is formed as the incident shock wave, the reflected shock wave and the Mach disk intersect. The shock wave, as it propagates, changes from Mach reflection to regular reflection, and meanwhile, the position of triple point moves from the initial Mach disk to the new Mach disk. With the interaction of shock wave and jet boundary layer, the shock train is formed in the core region of the jet. The pressure, density and Mach number are oscillatory distributed in the shock wave region. There is a relatively large velocity gradient between the high speed primary flow and the low speed secondary flow near the outlet of nozzle, which induces the formation of opposite rotating vortices in the shear layer of the cylinder. With the evolution of the vortex, the high speed jet transfers energy through the cylindrical shear layer and is accompanied by the large hydraulic loss. The total entropy production of the ejector increases with the increase of primary flow pressure. The entropy production rate has a strong correlation with the vorticity magnitude.
WOS研究方向Thermodynamics ; Engineering
语种英语
出版者SAGE PUBLICATIONS LTD
WOS记录号WOS:000813977400001
内容类型期刊论文
源URL[http://ir.lut.edu.cn/handle/2XXMBERH/158847]  
专题能源与动力工程学院
作者单位1.Lanzhou Univ Technol, Key Lab Fluid Machinery & Syst, Lanzhou 730050, Peoples R China
2.Lanzhou Univ Technol, Sch Energy & Power Engn, 287 Langongping Rd, Lanzhou 730050, Gansu, Peoples R China;
推荐引用方式
GB/T 7714
Jiang, Lijie,Zhang, Renhui,Chen, Xuebing,et al. Research on inner flow and energy characteristics of air ejector for liquid-ring vacuum pump[J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY,2022.
APA Jiang, Lijie,Zhang, Renhui,Chen, Xuebing,&Guo, Rong.(2022).Research on inner flow and energy characteristics of air ejector for liquid-ring vacuum pump.PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY.
MLA Jiang, Lijie,et al."Research on inner flow and energy characteristics of air ejector for liquid-ring vacuum pump".PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY (2022).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace