Diamine molecules double lock-link structured graphene oxide sheets for high-performance sodium ions storage
Zhang, Yu-Shan1,6; Zhang, Bin-Mei1,6; Hu, Yu-Xia7; Li, Jun1,6; Lu, Chun1,6; Liu, Ming-Jin2,3,4; Wang, Kuangye2,3,4; Kong, Ling-Bin1,6; Zhao, Chen-Zi5; Niu, Wen-Jun1,6
2021
关键词Amines Condensation reactions Costs Graphite Lithium-ion batteries Metal ions Sodium Storage (materials)Capacity retention Effective approaches Enhanced stability Improved structures Interlayer spacings Layered Structures Specific discharge capacity Storage performance
卷号34
DOI10.1016/j.ensm.2020.08.021
页码45-52
英文摘要Graphite has been commercialized as a material of lithium ions batteries because of its abundant source, low cost and excellent conductivity while the small interlayer spacing of graphite limits its application for Na+ insertion/extraction. Herein, an emerging and effective approach—chain-like H2N(CH2)xNH2 locked between graphene oxide (GO) sheets to expand the interlayer spacing of graphene with enhanced stability of layered structure was demonstrated by a dehydration condensation reaction. The as-obtained H2N(CH2)xNH2, which can link GO (xDM-GO), exhibits a lock-link structure, resulting in expanded interlayer spacing, with which the excellent Na+ storage performance with a high specific discharge capacity of 158.1 mAh g−1 at 0.1 A g−1 and outstanding capacity retention of 82.2% at a current density of 1 A g−1 can be achieved. The effects of interlayer spacing on Na+ diffusion coefficient and the rate capability were investigated, for which 0.95 nm is the most suitable interlayer spacing for the Na+ insertion/extraction. The novel strategy demonstrates an effective way to controllably tune the interlayer spacing with the improved structure stability of GO, resulting in the best Na+ insertion/extraction behavior with the excellent Na+ storage performance. © 2020
会议录Energy Storage Materials
会议录出版者Elsevier B.V., Netherlands
语种英语
ISSN号2405-8297
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS记录号WOS:000598783200005
内容类型会议论文
源URL[http://ir.lut.edu.cn/handle/2XXMBERH/132703]  
专题省部共建有色金属先进加工与再利用国家重点实验室
材料科学与工程学院
理学院
作者单位1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, 287 Langongping Road, Lanzhou; 730050, China;
2.Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu; 30013, Taiwan;
3.Department of Physics, National Sun Yat-Sen University, Kaohsiung; 80424, Taiwan;
4.Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu; 30013, Taiwan;
5.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing; 100084, China
6.School of Materials Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou; 730050, China;
7.School of Bailie Engineering &Technology, Lanzhou City University, Lanzhou; 730070, China;
推荐引用方式
GB/T 7714
Zhang, Yu-Shan,Zhang, Bin-Mei,Hu, Yu-Xia,et al. Diamine molecules double lock-link structured graphene oxide sheets for high-performance sodium ions storage[C]. 见:.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace