CORC  > 兰州理工大学  > 兰州理工大学
Numerical Simulation and Multi-Objective Optimization of Partition Cooling in Hot Stamping of the Automotive B-Pillar Based on RSM and NSGA-II
Cui, Maomao2; Wang, Zhao1; Wang, Leigang1; Huang, Yao1
刊名METALS
2020-09-01
卷号10期号:9
关键词B-pillar partition cooling hot stamping RSM NSGA-II multi-objective optimization
DOI10.3390/met10091264
英文摘要In this study, the simulation and optimization of the partition cooling in the hot stamping process was carried out for an automotive B-pillar through minimizing the maximum thickening rate and the maximum thinning rate located in the rapid and slow cooling zones. The optimization was implemented by investigating the process parameters such as friction coefficient, sheet austenitizing temperature, holding time, heating zone temperature, the upper binder force and the lower binder force. The optimal Latin hypercube design (OLHD), the response surface methodology (RSM) and the non-dominated sorting genetic algorithm (NSGA-II) were combined to establish the relationship between process parameters and form quality objectives. After multi-objective optimization, the maximum thickening rate and the maximum thinning rate of the slow cooling zone and rapid cooling zone were 11.1% and 12.4%, 4.7% and 7.1%, respectively. Afterwards, the simulation was performed according to the optimized parameter combinations to analyze the temperature field, microstructure, tensile strength, hardness, thickening rate and thinning rate, and forming quality. Moreover, the hot stamping test and experimental results showed that the microstructure of the ferrite and pearlite structure was uniformly distributed in the slow cooling zone, and its tensile strength reached 680 MPa, the elongation was 11.4% and the hardness was 230.56 HV, while the lath martensite structure was obtained in the rapid cooling zone, with tensile strength of up to 1390 MPa, elongation of about 7.0% and hardness reaching 478.78 HV. The results of thickness, microstructure, tensile strength and the hardness test correspond well with the simulation results.
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
出版者MDPI
WOS记录号WOS:000580669700001
内容类型期刊论文
源URL[http://ir.lut.edu.cn/handle/2XXMBERH/155107]  
专题兰州理工大学
作者单位1.Jiangsu Univ, Sch Mat Sci & Technol, Zhenjiang 212013, Jiangsu, Peoples R China
2.Lanzhou Univ Technol, Sch Mat Sci & Engn, Lanzhou 730050, Peoples R China;
推荐引用方式
GB/T 7714
Cui, Maomao,Wang, Zhao,Wang, Leigang,et al. Numerical Simulation and Multi-Objective Optimization of Partition Cooling in Hot Stamping of the Automotive B-Pillar Based on RSM and NSGA-II[J]. METALS,2020,10(9).
APA Cui, Maomao,Wang, Zhao,Wang, Leigang,&Huang, Yao.(2020).Numerical Simulation and Multi-Objective Optimization of Partition Cooling in Hot Stamping of the Automotive B-Pillar Based on RSM and NSGA-II.METALS,10(9).
MLA Cui, Maomao,et al."Numerical Simulation and Multi-Objective Optimization of Partition Cooling in Hot Stamping of the Automotive B-Pillar Based on RSM and NSGA-II".METALS 10.9(2020).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace