CORC  > 兰州理工大学  > 兰州理工大学
Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: Geometry architecture engineering for nonvolatile memory
Huang, Chi-Hsin1; Chang, Wen-Chih1; Huang, Jian-Shiou1; Lin, Shih-Ming1; Chueh, Yu-Lun1,2,3,4
刊名Nanoscale
2017
卷号9期号:20页码:6920-6928
关键词Atomic layer deposition Electric fields Geometry Hafnium oxides Indium compounds Memory architecture Metal insulator boundaries MIM devices Nanowires Random access storage Thin film circuits Thin film devices Thin films Architecture engineering Core-shell nanowires Electric field distributions Innovative approaches Local electric field Lower-power consumption Non-volatile memory Three dimensional geometry
ISSN号20403364
DOI10.1039/c6nr09564j
英文摘要Core-shell NWs offer an innovative approach to achieve nanoscale metal-insulator-metal (MIM) heterostructures along the wire radial direction, realizing three-dimensional geometry architecture rather than planar type thin film devices. This work demonstrated the tunable resistive switching characteristics of ITO/HfO2 core-shell nanowires with controllable shell thicknesses by the atomic layer deposition (ALD) process for the first time. Compared to planar HfO2 thin film device configuration, ITO/HfO2 core-shell nanowire shows a prominent resistive memory behavior, including lower power consumption with a smaller SET voltage of ∼0.6 V and better switching voltage uniformity with variations (standard deviation(σ)/mean value (μ)) of VSET and VRESET from 0.38 to 0.14 and from 0.33 to 0.05 for ITO/HfO2 core-shell nanowire and planar HfO2 thin film, respectively. In addition, endurance over 103 cycles resulting from the local electric field enhancement can be achieved, which is attributed to geometry architecture engineering. The concept of geometry architecture engineering provides a promising strategy to modify the electric-field distribution for solving the non-uniformity issue of future RRAM. © 2017 The Royal Society of Chemistry.
资助项目CNMM, National Tsing Hua University[104N2744E1]
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
语种英语
出版者Royal Society of Chemistry
WOS记录号WOS:000402034400037
状态已发表
内容类型期刊论文
源URL[http://ir.lut.edu.cn/handle/2XXMBERH/114898]  
专题兰州理工大学
省部共建有色金属先进加工与再利用国家重点实验室
通讯作者Chueh, Yu-Lun
作者单位1.Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
2.Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Sch Mat Sci & Engn, Lanzhou 730050, Gansu, Peoples R China
3.Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Peoples R China
4.Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
推荐引用方式
GB/T 7714
Huang, Chi-Hsin,Chang, Wen-Chih,Huang, Jian-Shiou,et al. Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: Geometry architecture engineering for nonvolatile memory[J]. Nanoscale,2017,9(20):6920-6928.
APA Huang, Chi-Hsin,Chang, Wen-Chih,Huang, Jian-Shiou,Lin, Shih-Ming,&Chueh, Yu-Lun.(2017).Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: Geometry architecture engineering for nonvolatile memory.Nanoscale,9(20),6920-6928.
MLA Huang, Chi-Hsin,et al."Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: Geometry architecture engineering for nonvolatile memory".Nanoscale 9.20(2017):6920-6928.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace