CORC  > 近代物理研究所  > 中国科学院近代物理研究所
JUNO physics and detector
Abusleme, Angel8; Adam, Thomas48; Ahmad, Shakeel73; Ahmed, Rizwan73; Aiello, Sebastiano58,59; Akram, Muhammad73; An, Fengpeng32; An, Guangpeng13; An, Qi24; Andronico, Giuseppe58,59
刊名PROGRESS IN PARTICLE AND NUCLEAR PHYSICS
2022-03-01
卷号123页码:51
关键词JUNO neutrino physics neutrino detector
ISSN号0146-6410
DOI10.1016/j.ppnp.2021.103927
通讯作者Abusleme, Angel()
英文摘要The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector in a laboratory at 700-m underground. An excellent energy resolution and a large fiducial volume offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. With six years of data, the neutrino mass ordering can be determined at a 3-4 sigma significance and the neutrino oscillation parameters sin(2 )theta(12), Delta m(21)(2), and vertical bar Delta m(32)(2)vertical bar can be measured to a precision of 0.6% or better, by detecting reactor antineutrinos from the Taishan and Yangjiang nuclear power plants. With ten years of data, neutrinos from all past core-collapse supernovae could be observed at a 3 sigma significance; a lower limit of the proton lifetime, 8.34 x 10(33) years (90% C.L.), can be set by searching for p -> (nu) over barK(+); detection of solar neutrinos would shed new light on the solar metallicity problem and examine the vacuum-matter transition region. A typical core-collapse supernova at a distance of 10 kpc would lead to similar to 5000 inverse-beta-decay events and similar to 2000 (300) all-flavor neutrino-proton (electron) elastic scattering events in JUNO. Geo-neutrinos can be detected with a rate of similar to 400 events per year. Construction of the detector is very challenging. In this review, we summarize the final design of the JUNO detector and the key R&D achievements, following the Conceptual Design Report in 2015 (Djurcic et al., 2015). All 20-inch PMTS have been procured and tested. The average photon detection efficiency is 28.9% for the 15,000 MCP PMTS and 28.1% for the 5000 dynode PMTS, higher than the JUNO requirement of 27%. Together with the >20 m attenuation length of the liquid scintillator achieved in a 20-ton pilot purification test and the >96% transparency of the acrylic panel, we expect a yield of 1345 photoelectrons per MeV and an effective relative energy resolution of 3.02%/root E(MeV) in simulations (Abusleme et al., 2021). To maintain the high performance, the underwater electronics is designed to have a loss rate <0.5% in six years. With degassing membranes and a micro-bubble system, the radon concentration in the 35 kton water pool could be lowered to <10 mBq/m(3). Acrylic panels of radiopurity <0.5 ppt U/Th for the 35.4-m diameter liquid scintillator vessel are produced with a dedicated production line. The 20 kton liquid scintillator will be purified onsite with Alumina filtration, distillation, water extraction, and gas stripping. Together with other low background handling, singles in the fiducial volume can be controlled to similar to 10 Hz. The JUNO experiment also features a double calorimeter system with 25,600 3-inch PMTS, a liquid scintillator testing facility OSIRIS, and a near detector TAO. (C) 2021 Elsevier B.V. All rights reserved.
资助项目Chinese Academy of Sciences ; National Key R&D Program of China ; CAS Center for Excellence in Particle Physics, Australia ; Tsung-Dao Lee Institute of Shanghai Jiao Tong University in China ; Institut National de Physique Nucleaire et de Physique de Particules (IN2P3) in France ; Istituto Nazionale di Fisica Nucleare (INFN) in Italy ; Italian-Chinese collaborative research program MAECI-NSFC ; Fond de la Recherche Scientifique (F.R.S-FNRS) , Belgium ; FWO under the Excellence of Science - EOSin Belgium ; Conselho Nacional de Desenvolvimento Cientifico e Tecnolgico in Brazil ; Agencia Nacional de Investigacion y Desarrollo in Chile ; Charles University Research Centre in Czech Republic ; Ministry of Education, Youth, and Sports in Czech Republic ; Deutsche Forschungsgemeinschaft (DFG) , Germany ; Helmholtz Association in Germany ; Cluster of Excellence PRISMA+ in Germany ; Joint Institute of Nuclear Research (JINR) , Russia ; Lomonosov Moscow State University in Russia ; Russian Science Foundation (RSF) ; National Natural Science Foundation of China (NSFC) ; MOST in Taiwan ; MOE in Taiwan ; Chulalongkorn University in Thailand ; Suranaree University of Technology in Thailand ; University of California at Irvine in USA ; Wuyi University, China
WOS关键词NEUTRON FISSION-PRODUCTS ; Q-BALLS ; ANTINEUTRINO SPECTRA ; MAGNETIC MONOPOLES ; REACTOR ; NEUTRINOS ; SEARCH ; SYSTEM ; MATTER ; OSCILLATIONS
WOS研究方向Physics
语种英语
出版者ELSEVIER
WOS记录号WOS:000748726700002
资助机构Chinese Academy of Sciences ; National Key R&D Program of China ; CAS Center for Excellence in Particle Physics, Australia ; Tsung-Dao Lee Institute of Shanghai Jiao Tong University in China ; Institut National de Physique Nucleaire et de Physique de Particules (IN2P3) in France ; Istituto Nazionale di Fisica Nucleare (INFN) in Italy ; Italian-Chinese collaborative research program MAECI-NSFC ; Fond de la Recherche Scientifique (F.R.S-FNRS) , Belgium ; FWO under the Excellence of Science - EOSin Belgium ; Conselho Nacional de Desenvolvimento Cientifico e Tecnolgico in Brazil ; Agencia Nacional de Investigacion y Desarrollo in Chile ; Charles University Research Centre in Czech Republic ; Ministry of Education, Youth, and Sports in Czech Republic ; Deutsche Forschungsgemeinschaft (DFG) , Germany ; Helmholtz Association in Germany ; Cluster of Excellence PRISMA+ in Germany ; Joint Institute of Nuclear Research (JINR) , Russia ; Lomonosov Moscow State University in Russia ; Russian Science Foundation (RSF) ; National Natural Science Foundation of China (NSFC) ; MOST in Taiwan ; MOE in Taiwan ; Chulalongkorn University in Thailand ; Suranaree University of Technology in Thailand ; University of California at Irvine in USA ; Wuyi University, China
内容类型期刊论文
源URL[http://119.78.100.186/handle/113462/142096]  
专题中国科学院近代物理研究所
通讯作者Abusleme, Angel
作者单位1.Politecn Milan, Milan, Italy
2.Jinan Univ, Guangzhou, Peoples R China
3.Univ Milano Bicocca, Milan, Italy
4.Yerevan Phys Inst, Yerevan, Armenia
5.Univ Libre Bruxelles, Brussels, Belgium
6.Univ Estadual Londrina, Londrina, Parana, Brazil
7.Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil
8.Pontificia Univ Catolica Chile, Santiago, Chile
9.Univ Tecn Federico Santa Maria, Valparaiso, Chile
10.Beijing Inst Spacecraft Environm Engn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Abusleme, Angel,Adam, Thomas,Ahmad, Shakeel,et al. JUNO physics and detector[J]. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS,2022,123:51.
APA Abusleme, Angel.,Adam, Thomas.,Ahmad, Shakeel.,Ahmed, Rizwan.,Aiello, Sebastiano.,...&Zou, Jiaheng.(2022).JUNO physics and detector.PROGRESS IN PARTICLE AND NUCLEAR PHYSICS,123,51.
MLA Abusleme, Angel,et al."JUNO physics and detector".PROGRESS IN PARTICLE AND NUCLEAR PHYSICS 123(2022):51.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace