CORC  > 光电技术研究所  > 中国科学院光电技术研究所  > 空天部
A 3 kHz High-Frequency Vibration Mirror Based on Resonant Mode
Han, Weiqiang1,3; Fan, Zhenjie1; Le, Bai1; Huang, Tao; Liu, Bo1; Zhao, Rujin1; Gao, Xiaodong1,3
刊名ACTA MICROSCOPICA
2020
卷号29期号:4页码:1866-1879
关键词Vibration Mirror Natural Frequency Amplitude Damping Ratio Drive Coil Moving Magnet
ISSN号0798-4545
文献子类期刊论文
英文摘要Infrared small/weak target detection systems detect small/weak target by subtracting the strong atmospheric background from the acquired image, in which a modulation process involving high-frequency vibration mirror (VM) is required. VM is also an indispensable core component in some laser scanning applications requiring extremely high accuracy. None of the existing VMs meet the requirements of large aperture and high frequency at the same time. This study deals with the development of a method to generate high-frequency vibration for large-aperture VMs, based on which a double torsion bar double moving magnet vibration mirror (DDVM) was designed. Two mathematical models based on DDVM, namely free vibration model and stimulated vibration model, are established, and then the conditions for achieving high frequency and large amplitude are obtained. Furthermore, a method for simulating and correcting the influence of the static magnetic attraction on the mirror surface shape is developed through a simulation of the designed DDVM based on the DDVM models, and a method for calculating the damping and driving force amplitude using the measured vibration bandwidth of DDVM structure is developed through dynamics simulation. Experimental results show that for a mirror with an optical aperture of Phi 40X56 mm, the optical scanning range reaches 0.584 degrees, and the vibration frequency reaches 3,033 Hz. The acceleration resulting from such vibration amplitude and frequency of the VM with the above aperture is more than 100 times the acceleration in rocket launch, which is difficult to achieve with other methods. The measured frequency is very close to the simulation result (3075 Hz) and the frequency calculated using the mathematical model (3098 Hz). The errors less than 2% prove the correctness of the DDVM mathematical model and the simulation analysis. From experimental data, the calculated bandwidth Delta f of DDVM is 6.1 Hz, the maximum gain coefficient Gn is 37694.7 rad.Hz2.N-1, and the damping coefficient D is 2.87X10-4 kg.m2.s-1. Thus, the accurate differential equation and the structure transfer function of DDVM are obtained.
出版地CARACAS
WOS研究方向Microscopy
语种英语
出版者COMITE INTERAMERICANO SOC MICROSCOPIA ELECTRONICA-CIASEM
WOS记录号WOS:000533554100018
内容类型期刊论文
源URL[http://ir.ioe.ac.cn/handle/181551/9909]  
专题空天部
作者单位1.Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Sichuan, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100149, Peoples R China
3.Chinese Acad Sci, Key Lab Sci & Technol Space Optoelect Precis Meas, Beijing 100149, Peoples R China
推荐引用方式
GB/T 7714
Han, Weiqiang,Fan, Zhenjie,Le, Bai,et al. A 3 kHz High-Frequency Vibration Mirror Based on Resonant Mode[J]. ACTA MICROSCOPICA,2020,29(4):1866-1879.
APA Han, Weiqiang.,Fan, Zhenjie.,Le, Bai.,Huang, Tao.,Liu, Bo.,...&Gao, Xiaodong.(2020).A 3 kHz High-Frequency Vibration Mirror Based on Resonant Mode.ACTA MICROSCOPICA,29(4),1866-1879.
MLA Han, Weiqiang,et al."A 3 kHz High-Frequency Vibration Mirror Based on Resonant Mode".ACTA MICROSCOPICA 29.4(2020):1866-1879.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace