investigatingthespatiallyheterogeneousrelationshipsbetweenclimatefactorsandndviinchinaduring1982to2013
Gao Jiangbo; Jiao Kewei; Wu Shaohong
刊名journalofgeographicalsciences
2019
卷号29期号:10页码:1597
ISSN号1009-637X
英文摘要Climate change is a major driver of vegetation activity, and thus their complex processes become a frontier and difficulty in global change research. To understand this relationship between climate change and vegetation activity, the spatial distribution and dynamic characteristics of the response of NDVI to climate change were investigated by the geographically weighted regression (GWR) model during 1982 to 2013 in China. This model was run based on the combined datasets of satellite vegetation index (NDVI) and climate observation (temperature and moisture) from meteorological stations nationwide. The results showed that the spatial non-stationary relationship between NDVI and surface temperature has appeared in China: the significant negative temperature-vegetation relationship was located in Northeast, Northwest and Southeast China, while the positive correlation was more concentrated from southwest to northeast. By comparing the normalized regression coefficients from GWR model for different climate factors, it presented the regions with moisture dominants for NDVI were in North China and the Tibetan Plateau, and the areas of temperature dominants were distributed in East, Central and Southwest China, where the annual mean maximum temperature accounted for the largest areas. In addition, regression coefficients from GWR model between NDVI dynamics and climate variability indicated that the higher warming rate could result in the weakened vegetation activity through some mechanisms such as enhanced drought, while the moisture variability could mediate the hydrothermal conditions for the variation of vegetation activity. When the increasing rate of photosynthesis exceeded that of respiration, the positive correlation between vegetation dynamics and climate variability was reflected. However, the continuous and dynamic process of vegetation activity response to climate change will be determined by spatially heterogeneous conditions in climate change and vegetation cover. Furthermore, the dynamic description of climate-induced vegetation activity from its rise to decline in different regions is expected to provide a scientific basis for initiating ecosystem-based adaptation strategies in response to global climate change.
语种英语
内容类型期刊论文
源URL[http://ir.igsnrr.ac.cn/handle/311030/100608]  
专题中国科学院地理科学与资源研究所
作者单位中国科学院地理科学与资源研究所
推荐引用方式
GB/T 7714
Gao Jiangbo,Jiao Kewei,Wu Shaohong. investigatingthespatiallyheterogeneousrelationshipsbetweenclimatefactorsandndviinchinaduring1982to2013[J]. journalofgeographicalsciences,2019,29(10):1597.
APA Gao Jiangbo,Jiao Kewei,&Wu Shaohong.(2019).investigatingthespatiallyheterogeneousrelationshipsbetweenclimatefactorsandndviinchinaduring1982to2013.journalofgeographicalsciences,29(10),1597.
MLA Gao Jiangbo,et al."investigatingthespatiallyheterogeneousrelationshipsbetweenclimatefactorsandndviinchinaduring1982to2013".journalofgeographicalsciences 29.10(2019):1597.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace