Magnetic field tuning of spin resonance in TmFeO3 single crystal probed with THz transient
Guo, Jiajia1; Cheng, Long2; Ren, Zhuang2; Zhang, Wenjie1; Lin, Xian1; Jin, Zuanming1; Cao, Shixun1; Sheng, Zhigao2; Ma, Guohong1
刊名JOURNAL OF PHYSICS-CONDENSED MATTER
2020-05-01
卷号32
关键词spin resonance orthoferrite terahertz spectroscopy magnetic anisotropic spin reorientation phase transition
ISSN号0953-8984
DOI10.1088/1361-648X/ab6d0f
通讯作者Cao, Shixun(sxcao@sbu.edu.cn) ; Sheng, Zhigao(zbigaosheng@hmfl.ac.cn) ; Ma, Guohong(phymagh@shu.edu.cn)
英文摘要TmFeO3, a canted antiferromagnet, has two intrinsic spin resonance modes in the terahertz (THz) frequency regime: quasi-ferromagnetic (q-FM) mode and quasi-antiferromagnetic (q-AFM) mode. Both the q-FM and q-AFM modes show strong magnetic field and temperature dependence. Hereby, by employing THz time-domain spectroscopy combined with external magnetic field and low temperature system, we systematically investigated the magnetic field induced frequency shift of q-FM and q-AFM modes as well as the temperature driven spin reorientation phase transition in TmFeO3 single crystal. In contrast to the isotropic temperature dependent two-mode, the magnetic field dependence of two-mode is strongly anisotropic: the magnetic field applied along c-axis (a-axis) can harden (soften) the spin resonance frequency of q-FM mode for Gamma(4) phase of TmFeO3, and the field applied along b-axis shows negligible frequency shift for the q-FM mode, with the q-AFM mode relatively stable. The present study provides solid evidence that the magnetic anisotropy in rare earth orthoferrite plays a dominant role in the q-FM mode and the occurrence of spin reorientation phase transition. With the magnetic anisotropic energy obtained from the temperature dependent q-FM and q-AFM mode frequencies, we can predict both magnetic field and temperature dependence of spin resonance in TmFeO3 single crystal via phenomenological analysis.
资助项目National Natural Science Foundation of China (NSFC)[11674213] ; National Natural Science Foundation of China (NSFC)[61975110] ; National Natural Science Foundation of China (NSFC)[11604202] ; National Natural Science Foundation of China (NSFC)[61735010] ; National Natural Science Foundation of China (NSFC)[11774217] ; Young Eastern Scholar at the Shanghai Institutions of Higher Learning[QD2015020] ; Science and Technology Commission of Shanghai Municipality (Shanghai Rising-Star Program)[18QA1401700] ; Shanghai Educational Development Foundation (Chen Guang project)[16CG45]
WOS关键词REORIENTATION ; SCATTERING ; WAVES ; LIGHT
WOS研究方向Physics
语种英语
出版者IOP PUBLISHING LTD
WOS记录号WOS:000524292300001
资助机构National Natural Science Foundation of China (NSFC) ; Young Eastern Scholar at the Shanghai Institutions of Higher Learning ; Science and Technology Commission of Shanghai Municipality (Shanghai Rising-Star Program) ; Shanghai Educational Development Foundation (Chen Guang project)
内容类型期刊论文
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/103599]  
专题中国科学院合肥物质科学研究院
通讯作者Cao, Shixun; Sheng, Zhigao; Ma, Guohong
作者单位1.Shanghai Univ, Dept Phys, Coll Sci, Shanghai 200444, Peoples R China
2.Chinese Acad Sci, Anhui Key Lab Condensed Matter Phys Extreme Condi, High Magnet Field Lab, Hefei 230031, Peoples R China
推荐引用方式
GB/T 7714
Guo, Jiajia,Cheng, Long,Ren, Zhuang,et al. Magnetic field tuning of spin resonance in TmFeO3 single crystal probed with THz transient[J]. JOURNAL OF PHYSICS-CONDENSED MATTER,2020,32.
APA Guo, Jiajia.,Cheng, Long.,Ren, Zhuang.,Zhang, Wenjie.,Lin, Xian.,...&Ma, Guohong.(2020).Magnetic field tuning of spin resonance in TmFeO3 single crystal probed with THz transient.JOURNAL OF PHYSICS-CONDENSED MATTER,32.
MLA Guo, Jiajia,et al."Magnetic field tuning of spin resonance in TmFeO3 single crystal probed with THz transient".JOURNAL OF PHYSICS-CONDENSED MATTER 32(2020).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace