题名解纤维梭菌的纤维素降解机制研究
作者黄冉冉
学位类别博士
答辩日期2013-07
授予单位中国科学院研究生院
授予地点北京
导师徐健
关键词木质纤维素降解 解纤维梭菌 纤维小体 差异全转录组测序 动态操纵子
学位专业生物化学与分子生物学
中文摘要木质纤维素是自然界中最丰富的生物质,但是它极难降解,严重限制了它的作为新能源材料的应用。在自然界中许多细菌能够有效地降解木质纤维素,但对这些纤维素降解细菌的全基因组代谢及调控网络还知之甚少。全面阐述纤维素降解细菌降解组的结构功能组分在体内是如何组装和调控的对于我们发掘天然的或开发改造的纤维素酶,以及开发高效的纤维素降解的细菌奠定基础。
我们以梭菌作为研究对象是因为其含有自然界中最有效的纤维素降解装置-纤维小体。在本研究中我们通过全基因组测序及分析,还有在以不同复杂程度糖类包括单糖(葡萄糖,木糖),双糖(纤维二糖),多糖(纤维素,木聚糖)以及复杂多糖(玉米秸秆)为底物条件下的全转录组测序及分析,以及以纤维素和纤维素降解产物包括纤维二糖和葡萄糖为底物条件下的细胞外分泌蛋白测定和分析,呈现了一个常温产纤维小体的解纤维梭菌(Clostridium cellulolyticum ATCC 35319)的精确到单个碱基的“纤维素降解组”。我们发现编码以下四类蛋白的基因在纤维素降解组中得到富集,其中包括核心代谢功能,环境感应,基因调控和多糖代谢。与此同时,通过对解纤维梭菌中包含的所有147个碳水化合物活性酶(carbohydrate-active enzymes,简称CAZymes)编码基因的差异表达分析我们发现由48个CAZymes组成的“核心酶”,这些酶是该菌降解包含有纤维素的底物所必须的。除“核心酶”之外,我们还发现一类由76个CAZymes组成的“附属酶”,而这些酶是该菌特异的降解非纤维素底物所必须的。基因的协同表达分析表明碳代谢抑制(carbon catabolite repression,简称CCR)相关的调控子能够感受细菌细胞内糖酵解中间产物的丰度进而控制主要由纤维小体组分组成的“核心酶”的表达。然而11套双组分系统(two-component systems,简称TCS)调节子能够对细菌细胞外可利用的可溶性糖做出反应,进而特异性的调节相对应的“附属酶”和对应的转运子的表达。令人惊奇的是,在以葡萄糖为单一底物条件下,核心纤维素酶在转录水平和蛋白水平都会高表达。此外,葡萄糖会以浓度依赖型的方式提高细菌的纤维素的降解能力,具体表现为在低浓度葡萄糖下诱导纤维素酶的转录,而在高浓度葡萄糖下促进细菌细胞生长。基于以上结论,我们提出了一个解纤维梭菌降解纤维素的分子模型,鉴别了该菌中底物特异性的CAZymes,揭示了由碳代谢抑制机制所介导的对核心纤维素酶的转录调控,并证实了在这个调控中,葡萄糖是作为一个碳代谢抑制的抑制剂而不是诱
解纤维梭菌的纤维素降解机制研究
II
导剂。这些特征为我们呈现了一个在纤维素利用过程中竞争或合作的特异的环境感应策略,在微生物纤维素降解的过程工程和遗传工程中可以被我们加以利用。
依据以上研究,我们发现在解纤维梭菌中,存在由碳代谢抑制(CCR)和双组分系统(TCS)组成的纤维素降解组的调节模式,该层面的调控作用于操纵子之间,控制不同操纵子的差异化转录。但通过对解纤维梭菌基因组研究我们发现解纤维梭菌纤维小体酶基因倾向于在染色体上聚集,其中包括经典的“cip-cel” 纤维小体纤维素酶基因簇(Ccel_0728-0739)和一个包含14个纤维小体酶基因簇(Ccel_1229-1242)。转录组研究表明编码纤维小体的三个高表达的重要组件(纤维小体支架蛋白CipC,外切葡聚糖酶Cel48F和内切葡聚糖酶Cel9E)都位于“cip-cel”基因簇内并且这个基因簇是呈多顺反子操纵子形式转录,所以了解细菌如何在操纵子内部调控从而控制构成纤维小体的关键亚基的相对丰度对全面的认识细菌如何降解纤维素具有至关重要的意义。
除纤维小体以外,细菌中很多蛋白复合体都由许多的结构组件或酶学组件构成,这些组件之间的相对丰度对于蛋白复合体行使功能具有至关重要的意义。为了探究细菌如何调控这些蛋白复合体组件的化学计量数,我们首次运用RNA-Seq测量了解纤维梭菌ATCC 35319在不同的碳源底物条件下的转录本的丰度和结构,发现在解纤维梭菌基因组上,有182个操纵子内包含的基因在发生转录时表现出“复杂型”的转录水平比率,即为“动态极性操纵子”(dynamic polarity operon,简称DPO)。这种操纵子的“动态极性”特性很精确的决定了纤维小体基因簇“cip-cel”内12个基因的相对转录丰度比率为389:417:19:22:128:7:5:1:1:1:1:1:2:6,这一比率在我们所测试的以单糖,双糖或多糖为底物条件下都是几乎稳定不变的,并且与蛋白的丰度比率相一致,这些结果都被遗传学基因敲除实验所验证,表明细菌对纤维小体组分化学计量数的严密调控。为了了解造成操纵子动态极性的原因,我们通过一种可以富集初级转录本5’末端的差异测序方法(differential RNA-Seq,简称dRNA-Seq)描绘了该菌的全基因组转录起始位点(transcriptional start-site,简称TS)和转录后加工位点(post-transcriptional processed site,简称PS)图谱。通过转录起始位点图谱我们发现了全基因组范围内的σ因子的结合位点,揭示了基于σ因子的精细调控网络。此外,通过转录起始位点图谱和转录后加工位点图谱,我们发现了在181个动态极性操纵子中,54个是由操纵子内部的转录起始位点和转录后加工位点引起的。体内和体外实验我们均验证了引起纤维小体基因簇“cip-cel”内12个基因的不同表达量的转录起始位点和转录后加工位点。通过纤维小体基因簇“cip-cel”在6个梭菌中的直系同源基因簇的分析揭示了操纵子的“动态极性”是一种进化上保守的转录/转录后调控机制,这种机制可以控制纤维小体的复杂
III
性,通过激活转录起始位点,转录后加工位点或两种兼有使得细菌能够形成比较精巧复杂(相对这个菌所处的进化阶段来说)的纤维小体“食谱”。因此,动态极性机制可能是一种广泛存在的细菌调节蛋白复合体亚基(或功能相关蛋白例如构成同一个代谢通路)的化学计量数的机制。此外,定量的检测动态极性在不同的生长环境或进化背景的变化可能帮助我们设计或优化合成的蛋白机器(在活体细胞内或活体细胞外)。
日益增加的测序能力让我们有可能将细菌转录组研究到一个前所未有的深度,揭示了细菌具有比我们以前认为的更复杂和更具动态性转录组。基于本博士论文研究的以上内容,我们开发了一个基于perl语言的细菌RNA-Seq数据分析平台BTA,可用于高通量mRNA测序数据的前处理,数据质量评估,基因表达量的估计等。这个分析平台不仅包括了一些常用的组件例如计算基因的表达量,生成可连配序列的信号,将这些可连配序列的信号分隔成活跃转录区域等,而且还包含有一个鉴别基因转录结构的新工具。本RNA-Seq数据分析平台具有广泛的应用基础,因为其不仅可用于分析用户自己的数据,而且可以分析公用数据库里的RNA-Seq数据。
综上所述,本博士论文研究以生理、遗传均具有积累的模式菌株解纤维梭菌作为研究对象,以多糖(木质纤维素)的降解过程为模式研究体系,通过基因组,转录组以及蛋白质组的结合,并在转录组研究中同时使用两种不同的RNA处理方法(dRNA-Seq),从而克服了单一RNA-Seq不能同时兼顾表征转录丰度和转录结构,而能够很全面的考察解纤维梭菌在纤维素降解过程中转录本的精确结构及其对应丰度,深入探讨了不同的纤维小体基因在基因组上的存在方式(分散存在或聚簇存在),进而揭示了解纤维梭菌在纤维素降解过程中针对不同的存在方式而采用的两个不同层面上的调控机制(碳代谢抑制和双组分系统调控机制,以及操纵子的动态极性调控机制),从而建立了针对常温纤维素降解菌的首个纤维素降解的精细研究模型。
对细菌纤维素降解机理的研究除了在微生物纤维素降解的过程工程和遗传工程中可以被我们加以利用外,这些努力的主要理论意义还在于让我们以解纤维梭菌中纤维小体基因簇为例子,深刻理解了一种广泛存在的细菌调节蛋白复合体亚基(或功能相关蛋白例如构成同一个代谢通路)的化学计量数的机制。与此同时,由于细菌中许多功能的行使或代谢通路的进行都是需要蛋白复合体来参与,预计定量的检测动态极性在不同的生长环境或进化背景的变化可能帮助我们设计或优化合成的蛋白机器。
英文摘要Lignocellulosic biomass is the most abundant biopolymers on earth, yet recalcitrance to hydrolysis has hampered its exploitation for renewable bioenergy and biomaterials. Many bacteria efficiently degrade lignocellulose yet the underpinning genome-wide metabolic and regulatory networks remained elusive. Identifying genetic components of the degradome of cellulolytic bacteria and elucidating how their activities are organized and regulated in vivo should form the basis for developing natural or engineered cellulases and their host cells for efficient production of cellulose-based biofuels. My thesis consists of three components.
(1) Here we revealed the “cellulose degradome” for the model mesophilic cellulolytic bacterium Clostridium cellulolyticum ATCC 35319, via an integrated analysis of its complete genome, its transcriptomes under glucose, xylose, cellobiose, cellulose, xylan or corn stover and its extracellular proteomes under glucose, cellobiose or cellulose. Proteins for core metabolic functions, environment sensing, gene regulation and polysaccharide metabolism were enriched in the cellulose degradome. Analysis of differentially expressed genes revealed a “core” set of 48 CAZymes required for degrading cellulose-containing substrates as well as an “accessory” set of 76 CAZymes required for degrading specific non-cellulose substrates. Gene co-expression analysis suggested that Carbon Catabolite Repression (CCR) related regulators sensed intracellular glycolytic intermediates and controlled the core CAZymes that mainly included cellulosomal components, whereas 11 sets of Two-Component Systems (TCSs) responded to availability of extracellular soluble sugars and respectively regulated most of the accessory CAZymes and associated transporters. Surprisingly, under glucose alone, the core cellulases were highly expressed at both transcript and protein levels. Furthermore, glucose enhanced cellulolysis in a dose-dependent manner, via inducing cellulase transcription at low concentrations. Therefore,a molecular model of cellulose degradome in Ccel was proposed, which revealed the substrate-specificity of CAZymes and the transcriptional regulation of core cellulases by CCR where the glucose acts as a CCR inhibitor instead of a trigger. These features represented a distinct environment-sensing strategy for competing while collaborating for cellulose utilization, which can be exploited for process and genetic engineering of microbial cellulolysis.
(2) The study above allowed us to understand the regulation of cellulose degradome in Ccel. This regulation consists of Carbon Catabolite Repression (CCR) and Two-component systems (TCSs), which operates at the inter-operon level and controls the differential transcription among operons. However, intra-operon regulatory mechanism of cellulase genes is not well understood. Our genome analysis showed that the cellulosomal genes in Ccel tend to physically cluster along the chromosome. We identified many cellulosomal gene clusters such as the “cip-cel” gene cluster (Ccel_0728-0740) that encodes the major cellulosome components (including scaffoldin) and another cluster of 14 genes (Ccel_1229-1242) encoding exclusively secreted dockerin-containing proteins, which are probably involved in hemicellulose degradation and herein named the “xyl-doc” gene cluster. Therefore, it’s important to understand the intra-operon regulation of the cellulase genes, in particular, how the relative abundance of core cellulosomal subunits were controlled in vivo.
Except for cellulosome, there are many protein machineries in bacteria which consist of many structural and enzymatic components whose relative abundance can be crucial for function. We found in Clostridium cellulolyticum that, in 182 “Dynamic Polarity Operons” (DPOs), genes that were tandem arranged inside an operon exhibited “complex” ratio of normalized transcriptional level (NTL). In the “cip-cel” cluster, the NTL ratio of the twelve genes encoding cellulosomal components, at 389:417:19:22:128:7:5:1:1:1:1:1:2:6, was largely stable under different carbohydrates and was consistent with the protein-abundance ratio. To understand the causes of the DPOs and the forces precisely controlling the stoichiometry in vivo, we mapped genome-wide transcriptional start-sites (TSs) and post-transcriptional processed sites (PSs) of transcripts via “differential mRNA-sequencing” (dRNA-Seq). The TS-Map uncovered genome-wide σ-factor binding sites and revealed the fine structure of a global σ-factor regulatory network. Intra-operon TSs and PSs underlie the NTL ratio that characterized 54 of the DPOs. In vivo and in vitro validation of predicted TSs and PSs in the cip-cel cluster suggested they underlie the differential NTL of the 12 genes in the cluster. Analysis of orthologous loci in six Clostridia species suggested DPO as an evolutionarily conserved mechanism that regulates the complexity and plasticity of cellulosome and created, in certain clostridia, an intricate yet precise recipe of cellulosomal components by modulating structure and abundance of intra-operon transcripts as guided by inter-operon TSs and PSs. Our findings have implications in the design and engineering of cellulosomes in vivo.
(3) Increasing sequencing capacity has made it possible to explore the bacterial transcriptome to an unprecedented depth, which has revealed that bacterial transcriptomes are more complex and dynamic than expected. To support the previous two studies, I have developed a Perl-based bacterial RNA-Seq analysis pipeline, BTA, for data quality control and expression level calculation of high-throughput sequencing-based transcriptional profiling datasets. This pipeline consists of a set of modules that perform tasks such as calculating gene expression values, generating signal tracks of mapped reads and identifying actively transcribed regions. It can also be used to identify transcript structure. This tool should have a wide user base, because it can be used to analyze user’s own datasets or public RNA-seq datasets from the ArrayExpress Archive.
语种中文
学科主题功能基因组
公开日期2013-07-13
内容类型学位论文
源URL[http://ir.qibebt.ac.cn:8080/handle/337004/1490]  
专题青岛生物能源与过程研究所_单细胞中心
推荐引用方式
GB/T 7714
黄冉冉. 解纤维梭菌的纤维素降解机制研究[D]. 北京. 中国科学院研究生院. 2013.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace