CORC  > 金属研究所  > 中国科学院金属研究所  > 期刊论文
Advanced materials for energy storage
C. liu ; F. li ; L. p. ma ; H. m. cheng
SourceAdvanced materials
KeywordLithium-ion batteries Carbon nanotube electrodes Enhanced hydrogen Storage Metal-organic frameworks Double-layer capacitors N-h system Carbide-derived carbons Ammonia borane dehydrogenation Ordered Mesoporous carbons High-rate performance
AbstractPopularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. in this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. the strategies for developing these advanced energy storage materials, including nanostructuring nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
Related URLs://wos:000275253400010
Available Date2012-04-13