CORC  > 北京大学  > 环境科学与工程学院
Thermodynamic properties of nanoparticles during new particle formation events in the atmosphere of North China Plain
Wu, Z. J. ; Ma, N. ; Groess, J. ; Kecorius, S. ; Lu, K. D. ; Shang, D. J. ; Wang, Y. ; Wu, Y. S. ; Zeng, L. M. ; Hu, M. ; Wiedensohler, A. ; Zhang, Y. H.
刊名ATMOSPHERIC RESEARCH
2017
关键词New particle formation Particle hygroscopicity Air pollution CCN Particle formation and growth Particle volatility CLOUD CONDENSATION NUCLEI SECONDARY ORGANIC AEROSOL BOREAL FOREST HYGROSCOPIC GROWTH SIZE DISTRIBUTION POTENTIAL CONTRIBUTION RELATIVE-HUMIDITY AIR-POLLUTION CCN ACTIVITY ACTIVATION
DOI10.1016/j.atmosres.2017.01.007
英文摘要To better understand the sources, formation, and the transport of air pollutants over North China Plain (NCP), a four-week intensive campaign during summertime in 2014 was conducted in a central NCP rural site. In this study, particle hygroscopicity and volatility measurements were focused to characterize the thermodynamic properties of nanoparticles and gain insight into chemical composition of nanoparticles during the new particle formation (NPF) events. The water-soluble fractions of 30 and 50 nm newly formed particles were respectively 0.64 +/- 0.06 and 0.61 +/- 0.06, indicating that the water-soluble chemical compounds, most likely ammonium sulfate, dominated the condensational growth of newly formed particles over the NCP. Due to containing higher water-soluble fraction, nanoparticles can be activated as cloud condensation nuclei (CCN) at lower supersaturation in the atmosphere of NCP in contrast to cleaner environments, such as Melpitz (Central European background) and Hyytiala (boreal forest) during the NPF events. Our observations showed that the NPF and subsequent growth significantly resulted in an enhancement in CCN number concentration. The ranges of enhancement factors of CCN number concentration for supersaturation (SS) = 0.2, 0.4, 0.8% were respectively 1.9-7.0, 2.7-8.4, and 3.6-10.1. After being heated to 300 degrees C, the shrink factors for 30 and 50 nm particles were respectively 0.35 and 038. This indicated that non-volatile compounds could be produced during the growth process of newly formed particles. (C) 2017 Elsevier B.V. All rights reserved.; National Natural Science Foundation of China [21190052, 41475127, 41571130021, 91544214, 41121004]; Non-profit Research Projects of Environmental Protection Department of China [201409010]; National Basic Research Program of China [2013CB228503]; State Key Joint Laboratory of Environment Simulation and Pollution Control [14L02ESPC]; Sino-German Science Center project [GZ663]; Collaborative Innovation Center for Regional Environmental Quality; SCI(E); ARTICLE; 55-63; 188
语种英语
内容类型期刊论文
源URL[http://ir.pku.edu.cn/handle/20.500.11897/473428]  
专题环境科学与工程学院
推荐引用方式
GB/T 7714
Wu, Z. J.,Ma, N.,Groess, J.,et al. Thermodynamic properties of nanoparticles during new particle formation events in the atmosphere of North China Plain[J]. ATMOSPHERIC RESEARCH,2017.
APA Wu, Z. J..,Ma, N..,Groess, J..,Kecorius, S..,Lu, K. D..,...&Zhang, Y. H..(2017).Thermodynamic properties of nanoparticles during new particle formation events in the atmosphere of North China Plain.ATMOSPHERIC RESEARCH.
MLA Wu, Z. J.,et al."Thermodynamic properties of nanoparticles during new particle formation events in the atmosphere of North China Plain".ATMOSPHERIC RESEARCH (2017).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace