CORC  > 金属研究所  > 中国科学院金属研究所
Colossal X-Ray-Induced Persistent Photoconductivity in Current-Perpendicular-to-Plane Ferroelectric/Semiconductor Junctions
Hu, WJ; Paudel, TR; Lopatin, S; Wang, ZH; Ma, H; Wu, KW; Bera, A; Yuan, GL; Gruverman, A; Tsymbal, EY
刊名ADVANCED FUNCTIONAL MATERIALS
2018-02-07
卷号28期号:6页码:-
关键词Ferroelectric Tunnel-junctions Charge-ordered Manganites Augmented-wave Method Bifeo3 Thin-films Oxygen Vacancy Relaxation Electroresistance Semiconductors Zn0.3cd0.7se Percolation
ISSN号1616-301X
英文摘要Persistent photoconductivity (PPC) is an intriguing physical phenomenon, where electric conduction is retained after the termination of electromagnetic radiation, which makes it appealing for applications in a wide range of opto electronic devices. So far, PPC has been observed in bulk materials and thin-film structures, where the current flows in the plane, limiting the magnitude of the effect. Here using epitaxial Nb: SrTiO3/Sm0.1Bi0.9FeO3/Pt junctions with a current-perpendicular-to-plane geometry, a colossal X-ray-induced PPC (XPPC) is achieved with a magnitude of six orders. This PPC persists for days with negligible decay. Furthermore, the pristine insulating state could be fully recovered by thermal annealing for a few minutes. Based on the electric transport and microstructure analysis, this colossal XPPC effect is attributed to the X-ray-induced formation and ionization of oxygen vacancies, which drives nonvolatile modification of atomic configurations and results in the reduction of interfacial Schottky barriers. This mechanism differs from the conventional mechanism of photon-enhanced carrier density/mobility in the current-in-plane structures. With their persistent nature, such ferroelectric/semiconductor heterojunctions open a new route toward X-ray sensing and imaging applications.; Persistent photoconductivity (PPC) is an intriguing physical phenomenon, where electric conduction is retained after the termination of electromagnetic radiation, which makes it appealing for applications in a wide range of opto electronic devices. So far, PPC has been observed in bulk materials and thin-film structures, where the current flows in the plane, limiting the magnitude of the effect. Here using epitaxial Nb: SrTiO3/Sm0.1Bi0.9FeO3/Pt junctions with a current-perpendicular-to-plane geometry, a colossal X-ray-induced PPC (XPPC) is achieved with a magnitude of six orders. This PPC persists for days with negligible decay. Furthermore, the pristine insulating state could be fully recovered by thermal annealing for a few minutes. Based on the electric transport and microstructure analysis, this colossal XPPC effect is attributed to the X-ray-induced formation and ionization of oxygen vacancies, which drives nonvolatile modification of atomic configurations and results in the reduction of interfacial Schottky barriers. This mechanism differs from the conventional mechanism of photon-enhanced carrier density/mobility in the current-in-plane structures. With their persistent nature, such ferroelectric/semiconductor heterojunctions open a new route toward X-ray sensing and imaging applications.
学科主题Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
语种英语
资助机构King Abdullah University of Science and Technology (KAUST); National Science Foundation through the Nebraska Materials Research Science and Engineering Center [DMR-1420645]
公开日期2018-06-05
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/79518]  
专题金属研究所_中国科学院金属研究所
通讯作者Wu, T (reprint author), King Abdullah Univ Sci & Technol, Mat Sci & Engn, Thuwal 239556900, Saudi Arabia.; Tsymbal, EY (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA.; Tsymbal, EY (reprint author), Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA.
推荐引用方式
GB/T 7714
Hu, WJ,Paudel, TR,Lopatin, S,et al. Colossal X-Ray-Induced Persistent Photoconductivity in Current-Perpendicular-to-Plane Ferroelectric/Semiconductor Junctions[J]. ADVANCED FUNCTIONAL MATERIALS,2018,28(6):-.
APA Hu, WJ.,Paudel, TR.,Lopatin, S.,Wang, ZH.,Ma, H.,...&Tsymbal, EY .(2018).Colossal X-Ray-Induced Persistent Photoconductivity in Current-Perpendicular-to-Plane Ferroelectric/Semiconductor Junctions.ADVANCED FUNCTIONAL MATERIALS,28(6),-.
MLA Hu, WJ,et al."Colossal X-Ray-Induced Persistent Photoconductivity in Current-Perpendicular-to-Plane Ferroelectric/Semiconductor Junctions".ADVANCED FUNCTIONAL MATERIALS 28.6(2018):-.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace