Catalysis by hybrid sp(2)/sp(3) nanodiamonds and their role in the design of advanced nanocarbon materials
Lin, Yangming1,2; Sun, Xiaoyan2; Su, Dang Sheng2,3; Centi, Gabriele4,5; Perathoner, Siglinda6
刊名CHEMICAL SOCIETY REVIEWS
2018-11-21
卷号47期号:22页码:8438-8473
ISSN号0306-0012
DOI10.1039/c8cs00684a
通讯作者Lin, Yangming(yang-ming.lin@cec.mpg.de) ; Su, Dang Sheng(dssu@dicp.ac.cn) ; Perathoner, Siglinda(perathon@unime.it)
英文摘要Hybrid sp(2)/sp(3) nanocarbons, in particular sp(3)-hybridized ultra-dispersed nanodiamonds and derivative materials, such as the sp(3)/sp(2)-hybridized bucky nanodiamonds and sp(2)-hybridized onion-like carbons, represent a rather interesting class of catalysts still under consideration. Their characteristics, properties and catalytic reactivity are presented, with an analysis of the state-of-the-art of their use in gas- and liquid-phase reactions, including photo- and electro-catalysis. It is remarked that intrinsic differences exist between these and other nanostructured carbon catalysts. The analysis shows how different features make nanocarbons unique with respect to other types of catalysts and are the bases for an advanced design of nanocarbon-type catalysts. The aspects discussed regard the presence of hybrid sp(2)/sp(3) configurations, nano-engineering related to the role of defects and vacancies in their catalytic behaviour, the creation of active sites by modification in the charge density at carbon atoms or C-C bonds, the generation of strained C-C bonds by curvature and other mechanisms, and the formation of semiconducting areas and defect sites at the interface with supported nanoparticles. The advanced strategies for identifying and quantifying active sites of carbon catalysts are highlighted.
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDA09030103] ; Italian MIUR through the PRIN Project[2015K7FZLH SMARTNESS] ; Max Planck Society
WOS关键词OXYGEN REDUCTION REACTION ; METAL-FREE CATALYSTS ; ONION-LIKE CARBON ; OXIDATIVE DEHYDROGENATION REACTIONS ; GRAPHENE-BASED MATERIALS ; NITROGEN-DOPED GRAPHENE ; ELECTROCHEMICAL ENERGY-STORAGE ; MODIFIED ANNEALED NANODIAMOND ; STEAM-FREE DEHYDROGENATION ; HETEROGENEOUS CATALYSIS
WOS研究方向Chemistry
语种英语
出版者ROYAL SOC CHEMISTRY
WOS记录号WOS:000449968700008
资助机构Strategic Priority Research Program of the Chinese Academy of Sciences ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Italian MIUR through the PRIN Project ; Italian MIUR through the PRIN Project ; Max Planck Society ; Max Planck Society ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Italian MIUR through the PRIN Project ; Italian MIUR through the PRIN Project ; Max Planck Society ; Max Planck Society ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Italian MIUR through the PRIN Project ; Italian MIUR through the PRIN Project ; Max Planck Society ; Max Planck Society ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Italian MIUR through the PRIN Project ; Italian MIUR through the PRIN Project ; Max Planck Society ; Max Planck Society
内容类型期刊论文
源URL[http://cas-ir.dicp.ac.cn/handle/321008/166644]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
通讯作者Lin, Yangming; Su, Dang Sheng; Perathoner, Siglinda
作者单位1.Max Planck Inst Chem Energiekonvers, Stiftstr 34-36, D-45470 Mulheim, Germany
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
3.Chinese Acad Sci, Dalian Inst Chem Phys, 457 Zhongshan Rd, Dalian, Peoples R China
4.Univ Messina, ERIC Aisbl, Vle F Stagno DAlcontres 31, I-98166 Messina, Italy
5.CASPE INSTM, Depts MIFT Ind Chem, Vle F Stagno DAlcontres 31, I-98166 Messina, Italy
6.Univ Messina, Depts ChiBioFarAm Ind Chem, Vle F Stagno DAlcontres 31, I-98166 Messina, Italy
推荐引用方式
GB/T 7714
Lin, Yangming,Sun, Xiaoyan,Su, Dang Sheng,et al. Catalysis by hybrid sp(2)/sp(3) nanodiamonds and their role in the design of advanced nanocarbon materials[J]. CHEMICAL SOCIETY REVIEWS,2018,47(22):8438-8473.
APA Lin, Yangming,Sun, Xiaoyan,Su, Dang Sheng,Centi, Gabriele,&Perathoner, Siglinda.(2018).Catalysis by hybrid sp(2)/sp(3) nanodiamonds and their role in the design of advanced nanocarbon materials.CHEMICAL SOCIETY REVIEWS,47(22),8438-8473.
MLA Lin, Yangming,et al."Catalysis by hybrid sp(2)/sp(3) nanodiamonds and their role in the design of advanced nanocarbon materials".CHEMICAL SOCIETY REVIEWS 47.22(2018):8438-8473.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace