CORC  > 武汉植物园  > 中国科学院武汉植物园
Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries
Chen, Jie; Wang, Nian; Fang, Lin-Chuan; Liang, Zhen-Chang; Li, Shao-Hua; Wu, Ben-Hong
刊名BMC PLANT BIOLOGY
2015
英文摘要Background: QTLs controlling individual sugars and acids (fructose, glucose, malic acid and tartaric acid) in grape berries have not yet been identified. The present study aimed to construct a high-density, high-quality genetic map of a winemaking grape cross with a complex parentage (V. vinifera x V. amurensis) x ((V. labrusca x V. riparia) x V. vinifera), using next-generation restriction site-associated DNA sequencing, and then to identify loci related to phenotypic variability over three years. Results: In total, 1 826 SNP-based markers were developed. Of these, 621 markers were assembled into 19 linkage groups (LGs) for the maternal map, 696 for the paternal map, and 1 254 for the integrated map. Markers showed good linear agreement on most chromosomes between our genetic maps and the previously published V. vinifera reference sequence. However marker order was different in some chromosome regions, indicating both conservation and variation within the genome. Despite the identification of a range of QTLs controlling the traits of interest, these QTLs explained a relatively small percentage of the observed phenotypic variance. Although they exhibited a large degree of instability from year to year, QTLs were identified for all traits but tartaric acid and titratable acidity in the three years of the study; however only the QTLs for malic acid and beta ratio (tartaric acid-to-malic acid ratio) were stable in two years. QTLs related to sugars were located within ten LGs (01, 02, 03, 04, 07, 09, 11, 14, 17, 18), and those related to acids within three LGs (06, 13, 18). Overlapping QTLs in LG14 were observed for fructose, glucose and total sugar. Malic acid, total acid and beta ratio each had several QTLs in LG18, and malic acid also had a QTL in LG06. A set of 10 genes underlying these QTLs may be involved in determining the malic acid content of berries. Conclusion: The genetic map constructed in this study is potentially a high-density, high-quality map, which could be used for QTL detection, genome comparison, and sequence assembly. It may also serve to broaden our understanding of the grape genome.
内容类型期刊论文
源URL[http://202.127.146.157/handle/2RYDP1HH/312]  
专题中国科学院武汉植物园
推荐引用方式
GB/T 7714
Chen, Jie,Wang, Nian,Fang, Lin-Chuan,et al. Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries[J]. BMC PLANT BIOLOGY,2015.
APA Chen, Jie,Wang, Nian,Fang, Lin-Chuan,Liang, Zhen-Chang,Li, Shao-Hua,&Wu, Ben-Hong.(2015).Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries.BMC PLANT BIOLOGY.
MLA Chen, Jie,et al."Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries".BMC PLANT BIOLOGY (2015).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace