A facile strategy to fabricate reduced TiO2 nano-tube arrays photoelectrode and its high visible light photocatalytic performance for detoxification of trichlorophenol solution
Deng, Xiaoyong1; Guo, Ruonan1; Zhang, Huixuan1; Li, Bo1,3; Ma, Qiuling1; Cui, Yuqi1; Zhang, Xinyi1; Cheng, Xiuwen1,3; Xie, Mingzheng1; Cheng, Qingfeng2
刊名JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS
2018-04-01
卷号85页码:83-90
关键词Reduced Tio2 Nano-tube Arrays Photoelectrode Photocatalysis Detoxification Trichlorophenol
文献子类Article
英文摘要In the research, reduced TiO2 nano-tube arrays (denoted as R-TiO2 NTAs) photoelectrode was successfully fabricated by potassium borohydride (PBH) reduction treatment. Afterwards, the as-fabricated photoelectrode was characterized by scanning electron microscope, X-ray diffraction, Raman spectra and electron spin resonance. Meanwhile, the optical and photoelectrochemical properties of R-TiO2 NTAs photoelectrode were also studied through ultraviolet-visible diffuse reflectance spectroscopy and transient photocurrent response, respectively. The photocatalytic (PC) activity of R-TiO2 NTAs photoelectrode was measured by degradation of trichlorophenol (TCP). Moreover, the change of toxic intermediates in the process of degradation TCP was further evaluated by photobacterium inhibition tests. Results suggested that an impurity level can be induced in the TiO2 NTAs band gap by solution reduction treatment due to the generation of Ti3+ and oxygen vacancies (Ov). Furthermore, R-TiO2 NTAs photoelectrode exhibited higher PC activities than that of pristine TiO2 NTAs owing to the enhancement of visible light harvesting between 450 and 800 nm and separation efficiency of photogenerated electrons-holes (e/h(+)) pairs. The possible pathway for TCP degradation and photocatalytic mechanism were also proposed and confirmed. Furthermore, R-TiO2 NTAs photoelectrode displayed good stability and reusability. (C) 2017 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
WOS关键词TI3+ ; DEGRADATION ; CHLOROPHENOLS ; NANOPARTICLES ; CONSTRUCTION ; MECHANISM ; WATER ; 2,4,6-TRICHLOROPHENOL ; HYDRODECHLORINATION ; 4-CHLOROPHENOL
WOS研究方向Engineering
语种英语
WOS记录号WOS:000429518800008
内容类型期刊论文
源URL[http://ir.isl.ac.cn/handle/363002/6445]  
专题青海盐湖研究所_青海盐湖研究所知识仓储
作者单位1.Lanzhou Univ, Coll Earth & Environm Sci, Key Lab Environm Pollut Predict & Control, Minist Educ,Key Lab Western Chinas Environm Syst, Lanzhou 730000, Gansu, Peoples R China
2.Chengdu Univ Informat Technol, Coll Resources & Environm, Chengdu 610225, Sichuan, Peoples R China
3.Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, Xinning Rd 18, Xining 810008, Qinghai, Peoples R China
推荐引用方式
GB/T 7714
Deng, Xiaoyong,Guo, Ruonan,Zhang, Huixuan,et al. A facile strategy to fabricate reduced TiO2 nano-tube arrays photoelectrode and its high visible light photocatalytic performance for detoxification of trichlorophenol solution[J]. JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS,2018,85:83-90.
APA Deng, Xiaoyong.,Guo, Ruonan.,Zhang, Huixuan.,Li, Bo.,Ma, Qiuling.,...&Cheng, Qingfeng.(2018).A facile strategy to fabricate reduced TiO2 nano-tube arrays photoelectrode and its high visible light photocatalytic performance for detoxification of trichlorophenol solution.JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS,85,83-90.
MLA Deng, Xiaoyong,et al."A facile strategy to fabricate reduced TiO2 nano-tube arrays photoelectrode and its high visible light photocatalytic performance for detoxification of trichlorophenol solution".JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS 85(2018):83-90.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace