Electric-field control of electronic transport properties and enhanced magnetoresistance in La0.7Sr0.3MnO3/0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3lead-free multiferroic structures
Yan, Jian-Min1,2; Gao, Guan-Yin3; Liu, Yu-Kuai4; Wang, Fei-Fei1; Zheng, Ren-Kui2
刊名Journal of Applied Physics
2017
卷号122期号:13
ISSN号00218979
DOI10.1063/1.4990513
英文摘要We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3(LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3(BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices. © 2017 Author(s).
内容类型期刊论文
源URL[http://ir.sic.ac.cn/handle/331005/25428]  
专题中国科学院上海硅酸盐研究所
作者单位1.Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University, Shanghai; 200234, China;
2.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai; 200050, China;
3.Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei; 230026, China;
4.Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, Hong Kong
推荐引用方式
GB/T 7714
Yan, Jian-Min,Gao, Guan-Yin,Liu, Yu-Kuai,et al. Electric-field control of electronic transport properties and enhanced magnetoresistance in La0.7Sr0.3MnO3/0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3lead-free multiferroic structures[J]. Journal of Applied Physics,2017,122(13).
APA Yan, Jian-Min,Gao, Guan-Yin,Liu, Yu-Kuai,Wang, Fei-Fei,&Zheng, Ren-Kui.(2017).Electric-field control of electronic transport properties and enhanced magnetoresistance in La0.7Sr0.3MnO3/0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3lead-free multiferroic structures.Journal of Applied Physics,122(13).
MLA Yan, Jian-Min,et al."Electric-field control of electronic transport properties and enhanced magnetoresistance in La0.7Sr0.3MnO3/0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3lead-free multiferroic structures".Journal of Applied Physics 122.13(2017).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace