题名平面异质结钙钛矿太阳能电池的形貌调控与界面研究
作者王君义
答辩日期2017-05
文献子类硕士 ; 学位论文 ; 硕士 ; 学位论文
授予单位中国科学院大学;中科院青岛生物能源与过程研究所
授予地点北京;青岛
导师钙钛矿,添加剂,形貌调控,PEDOT:PSS,界面工程
关键词工程硕士
其他题名材料工程
学位专业自2009年以来,作为新一代的有机-无机杂化钙钛矿太阳能电池(PVSCs),得到了众多研究机构和产业界的广泛关注,并获得了迅猛发展。目前钙钛矿太阳能电池在实验室阶段的认证效率高达22.1%,接近硅电池的水平。同时,来源广泛、低廉的原材料,简单的制备工艺,不断提升的能量转换效率(PCE)和稳定性,使其展现出了极大的商业潜力和广阔的应用前景。 本论文主要着眼于平面异质结钙钛矿电池的薄膜形貌和结晶性调控,以及发展新型廉价高效的界面传输层材料,具体开展了: “通过采用添加剂控制钙钛矿薄膜的结晶形貌;开发新型空穴传输材料及采用双空穴传输层的界面工程提高钙钛矿太阳能电池的转换效率”的三方面工作。研究内容如下: 1)钙钛矿层薄膜形貌直接决定着钙钛矿太阳能电池的能量转换效率及器件稳定性。而形成致密、无裂隙、全覆盖的钙钛矿薄膜是制备高效稳定太阳能电池的前提。在混合溶剂γ-丁内酯(GBL):二甲基亚砜(DMSO)(v/v=7:3)制备的钙钛矿材料前驱液中,首次采用高沸点N-甲基吡咯烷酮(NMP,5v/v%)作添加剂。NMP的引入,能够显著控制钙钛矿晶粒的生长过程,提高钙钛矿薄膜的结晶形貌。进而在退火的条件下形成钙钛矿薄膜,得到的钙钛矿薄膜如镜面般亮泽,粒径的均方根仅为2.39 nm。制备的反型电池器件,PCE由9.94%提高到11.77%,填充因子(FF)由0.74提高到0.81。 2)利用能级更为匹配,导电能力更强的界面传输材料是提升钙钛矿电池能量转换效率的重要途径。在此,以来源广泛的木质素为主要材料,通过进一步的化学修饰,制得磺化-丙酮-甲醛-木质素(简写为GSL),通过空间电荷限制电流法测得其空穴迁移率可达2.27×10-6 cm2 V-1 s-1。进一步将GSL掺杂到PEDOT中,制备出界面材料PEDOT:GSL,拥有比传统PEDOT:PSS更高的导电性以及更匹配的能级。同时,将PEDOT:GSL作为空穴传输层用于反型平面钙钛矿太阳能电池中,得到了更高的开路电压(Voc)、短路电流(Jsc)和填充因子(FF)。最终获得了14.9%的能量转换效率,相比在相同制备条件下以PEDOT:PSS作为传输层的电池器件提高了18.3%。 3)在上述工作的基础上,进一步利用PEDOT:PSS与PEDOT:GSL作为双空穴传输层,不仅实现了能级差的调控,而且增强了入射光透射率,钝化了界面,最终大幅提升了钙钛矿太阳能电池的能量转换效率(17.8%),相比于单PEDOT:PSS层的电池器件转换效率(13.4%)提高了32.6%。该方法为进一步提高钙钛矿电池转换效率提供了一种很好的指导思路。 关键词:钙钛矿,添加剂,形貌调控,PEDOT:PSS,界面工程
英文摘要中文;英文
语种中文
公开日期2018
内容类型学位论文
源URL[http://ir.qibebt.ac.cn/handle/337004/9980]  
专题青岛生物能源与过程研究所_先进有机功能材料团队
作者单位1.中科院青岛生物能源与过程研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
王君义. 平面异质结钙钛矿太阳能电池的形貌调控与界面研究[D]. 北京;青岛. 中国科学院大学;中科院青岛生物能源与过程研究所. 2017.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace