Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
Chen, L; Shi, GS; Shen, J; Peng, BQ; Zhang, BW; Wang, YZ; Bian, FG; Wang, JJ; Li, DY; Qian, Z
刊名NATURE
2017
卷号550期号:7676页码:-
关键词Carbon Nanotubes Layered Graphene Porous Graphene Transport Separation Mechanism Ultrathin Future
ISSN号0028-0836
DOI10.1038/nature24044
文献子类期刊论文
英文摘要Graphene oxide membranes-partially oxidized, stacked sheets of graphene(1)-can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution(2-6). These materials have shown potential in a variety of applications, including water desalination and purification(7-9), gas and ion separation(10-13), biosensors(14), proton conductors(15), lithium-based batteries(16) and super-capacitors(17). Unlike the pores of carbon nanotube membranes, which have fixed sizes(18-20), the pores of graphene oxide membranes-that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)-are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution(21-25). These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with angstrom precision using K+, Na+, Ca2+, Li+ or Mg2+ ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) should have a much stronger cation-pi interaction with the graphene sheet than Na+ has(26), suggesting that other ions could be used to produce a wider range of interlayer spacings.
WOS关键词CARBON NANOTUBES ; LAYERED GRAPHENE ; POROUS GRAPHENE ; TRANSPORT ; SEPARATION ; MECHANISM ; ULTRATHIN ; FUTURE
语种英语
WOS记录号WOS:000413247900057
内容类型期刊论文
源URL[http://ir.sinap.ac.cn/handle/331007/28712]  
专题上海应用物理研究所_中科院上海应用物理研究所2011-2017年
推荐引用方式
GB/T 7714
Chen, L,Shi, GS,Shen, J,et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. NATURE,2017,550(7676):-.
APA Chen, L.,Shi, GS.,Shen, J.,Peng, BQ.,Zhang, BW.,...&Fang, HP.(2017).Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.NATURE,550(7676),-.
MLA Chen, L,et al."Ion sieving in graphene oxide membranes via cationic control of interlayer spacing".NATURE 550.7676(2017):-.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace