题名类生命成像系统基础理论与实现方法
作者李恭新
学位类别博士
答辩日期2017-05-26
授予单位中国科学院沈阳自动化研究所
授予地点沈阳
导师王越超 ; 刘连庆
关键词类生命设计理念 类生命成像系统 压缩感知 光遗传学 石墨烯器件
其他题名Basic Theory and Realization Method of Biosyncretic Imaging System
学位专业模式识别与智能系统
中文摘要本文旨在搭建融合了生物成像功能单元与机电装置的类生命成像系统,以验证类生命成像设计的可行性,也为解决未来成像系统发展所面临问题提供一种新的方法。为了达到这个目标,本文展开以下几个方面的研究工作: 1) 生物信息接口问题和细胞光响应特性研究。搭建类生命成像系统的关键是构建类生命的生物光电器件,研究生物信息的解析方法和解决生物与机电的接口问题。本文作者借助光遗传学方法将具有良好光电特性的视蛋白转染到活体细胞中,构建具有光敏特性的生物光电器件。而后,提出用光刺激后细胞膜形变表征该细胞光响应特性的方法,并以原子力显微镜为生物与机电接口,研究了该细胞的光响应特性;为了进一步的提高细胞光响应信号解析速率,作者又以膜片钳作为生物信号接口,以全细胞电流为细胞光电特性表征方法,研究了该生物光电探测器的光电特性。 2) 单像素设计及稀疏信号快速重构算法研究。受现今制造技术限制,还难以制造出类似于传统成像系统的图像传感器CCD的生物光电探测器阵列,并且也难以检测这种阵列的生物信息。为此,作者提出用基于压缩感知理论的单像素设计作为类生命成像系统的框架,该方法能够以单个活体细胞作为光电探测器并实现对宏观物体的成像。其次,针对活体细胞在体外存活时间较短的问题,作者从压缩感知理论出发,研究了稀疏信号的快速重构算法以提高成像系统的成像速率。 3) 搭建类生命成像系统与成像实验。基于细胞膜形变和全细胞电流的光响应特性解析方法,对应以原子力显微镜和膜片钳装置为生物和机电的信号接口,以及单像素成像设计系统和理论的研究等基础上,作者搭建了基于原子力显微镜的类生命的成像系统和基于膜片钳装置的类生命成像系统。两种类生命成像系统都成功获取了一系列的宏观物体的图像,成功的验证了类生命设计理念的可行性。 4) 无损的便携式的多细胞生物信息接口与多细胞光电特性研究。类生命成像系统生物信息的检测需要用到大型复杂的仪器,例如:原子力显微镜系统和膜片钳装置,导致该系统难以在实验室以外的环境中使用;此外,这些方法研究对象只能是单个活体细胞,以此构建的生物光电器件的光电流响应度较低,并且对细胞都存在一定程度上的损害。因此,急需发展一种便捷式的无损的多细胞的光电信息检测手段。而受石墨烯材料及其运用于生物信息检测上的启发,本文也将石墨烯作为生物与机电系统的信息接口,用于对光敏细胞群体的光电信息的检测。在本文中,作者提出了用光刻还原氧化石墨烯的方法制造石墨烯器件;其次,研究了石墨烯器件本身的光电性能;然后,设计和构建了基于石墨烯器件的多细胞类生命器件,分析了生物器件检测多细胞光电特性的原理;最后,从实验上验证了该方法的可行性。
英文摘要The paper focuses on building a biosyncretic imaging system, which integrates biological imaging unit and electromechanical system, to verify the feasibility of biosyncretic imaging and provide a new method for solving problems of the development of future imaging system. In order to achieve the goal, this paper carry out the following research works: 1) Study on biological interface and cell photo-response properties. The key to building a biosyncretic imaging system is to design and fabricate biological photodetector, find an analytical method of bio-information and a way of bio-information interface. In this paper, the optogenetics was used to transfect the opsin with well photoelectric properties into the living cells to fabricate a bio-photodetector. Then, the author proposed a method of representation photo-response properties using the deformation of cell membrane upon absorption photon. And studied the photoelectric properties of the cell with the bio-information interface of an atomic force microscope. In order to further improve the acquisition rate of the cell photoelectric signal, the author also studied the photoelectric properties of the cell photodetector in biology and device using patch-clamp as a biological information interface. 2) Single-pixel design and reconstruction algorithm of sparse signals. By the limitations of manufacturing technology, it is difficult to fabricate an array of bio-photodetectors like as an image sensor CCD in a conventional imaging system and also difficult to detect bio-information of the cell array. So, in this paper, a single-pixel design based on compressive sensing has been proposed as a framework for the biosyncretic imaging system, and it can capture images of macroscopic objects with a single living cell as a photodetector. In addition, in order to solve the problem of short survival time of living cells in vitro, the author proposed two fast reconstruction algorithms of sparse algorithm to improve the imaging rate. 3) Biosyncretic imaging system and take experiments with the systems. The author built two biosyncretic imaging systems based on different principles, which are the representation methods of the cell photoelectric based on the deformation of cell membrane and the whole cell current, and the corresponding bio-information interface: atomic force microscope and patch-clamp, respectively. The both imaging systems have successfully acquired a series of images of microscopic objects, and verified the feasibility of biosyncretic design concept. 4) Study on the multicellular bio-information interface with non-invasive and portable and the photoelectric properties of the multi-cells. The detection of bio- information in the biosyncretic imaging system requires large and complex instruments, such as atomic force microscope and patch-clamp device, which make it difficult for the system to be used outside the laboratory. In addition, these methods can measure only single-cell, which leads to the lower photocurrent-response of bio-photodetector, and take a certain degree of damage to the cell. Therefore, it is badly in need of detection method of photoelectric information for multi-cells with non-invasive and portable. Inspired by the graphene material and it application of detection of bio-information, the graphene was also as a bio-information interface and used to detect the photoelectric information of multi-cells. In this part, the author put forward a method of photolithography reduction of graphene oxide to fabricate the graphene device. Secondly, the photoelectric properties of the graphene device were studied. Then, the multi-cells biosyncretic device based on the graphene device was designed and built, and the principle of detection multi-cells photoelectric properties was analyzed. Finally, the feasibility of the method was verified experimentally.
语种中文
产权排序1
内容类型学位论文
源URL[http://ir.sia.cn/handle/173321/20554]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
李恭新. 类生命成像系统基础理论与实现方法[D]. 沈阳. 中国科学院沈阳自动化研究所. 2017.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace