CORC  > 厦门大学  > 化学化工-已发表论文
Importance of electronic delocalization on the C-N bond rotation in HCX(NH2) (X = O, NH, CH2, S, and Se)
Mo, YR ; Schleyer, PV ; Wu, W ; Wu W(吴玮) ; Lin, MH ; Lin MH(林梦海) ; Zhang, Q ; Zhang QE(张乾二) ; Gao, JL
2003-10-29
英文摘要A block-localized wave function method, which in effect can switch off conventional conjugation and hyperconjugation effects, is employed to investigate the origin of the rotational barriers in formamide and its analogues. It is found that the resonance between the pi electrons on the C=X double bond and the nitrogen lone pair significantly stabilizes the planar conformation in HCXNH2 (X = O, NH, CH2, S, and Se). The absolute resonance energy follows the order of formamide < thioformamide < selenoformamide, with predicted vertical resonance energies of -25.5, -35.7, and -37.6 kcal/mol, respectively. The computed vertical resonance energies for X = 0, NH, and CH2 are -25.5, -22.5, and -19.1 kcal/mol, respectively, which follow the decreasing trend of electronegativity. Although the rotational barrier about the C-N bond in vinylamine (4.5 kcal/mol) is much smaller than that of formamide (15.7 kcal/mol), the resonance energy in vinylamine is of the same order as that of formamide (-19.1 versus -25.5 kcal/mol). Consequently, the rotational barrier in formamide cannot be simply regarded as a result of the carbonyl polarization as proposed in early studies. In fact, energy decomposition results reveal that resonance and sigma-framework steric effects are equally important for the estimated difference in rotational barrier. Ab initio valence bond calculations are performed to investigate the electronic delocalization in formamide and its analogues. Examination of the electron density difference between the adiabatic (delocalized) and diabatic (localized) states revealed that the resonance in the planar formamide shifts electron density from nitrogen both to carbon and to oxygen, supporting the conventional resonance model. This is accompanied by the opposing migration of the sigma charge density, making the integrated atomic charges smaller than that expected from pure pi delocalization.
语种英语
出版者AMER CHEMICAL SOC
内容类型期刊论文
源URL[http://dx.doi.org/doi:10.1021/jp036560c]  
专题化学化工-已发表论文
推荐引用方式
GB/T 7714
Mo, YR,Schleyer, PV,Wu, W,et al. Importance of electronic delocalization on the C-N bond rotation in HCX(NH2) (X = O, NH, CH2, S, and Se)[J],2003.
APA Mo, YR.,Schleyer, PV.,Wu, W.,吴玮.,Lin, MH.,...&Gao, JL.(2003).Importance of electronic delocalization on the C-N bond rotation in HCX(NH2) (X = O, NH, CH2, S, and Se)..
MLA Mo, YR,et al."Importance of electronic delocalization on the C-N bond rotation in HCX(NH2) (X = O, NH, CH2, S, and Se)".(2003).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace