CORC  > 清华大学
基于生物燃料供应链分析框架的生命周期评价(英文)
刘喆轩 ; 邱彤 ; 陈丙珍 ; LIU Zhexuan ; QIU Tong ; CHEN Bingzhen
2016-03-30 ; 2016-03-30
关键词biofuel life cycle assessment supply chain optimization TQ517
其他题名A LCA Based Biofuel Supply Chain Analysis Framework
中文摘要This paper presents a life cycle assessment(LCA) based biofuel supply chain(SC) analysis framework which enables the study of economic, energy and environmental(3E) performances by using multi-objective optimization. The economic objective is measured by the total annual profit, the energy objective is measured by the average fossil energy(FE) inputs per MJ biofuel and the environmental objective is measured by greenhouse gas(GHG) emissions per MJ biofuel. A multi-objective linear fractional programming(MOLFP) model with multi-conversion pathways is formulated based on the framework and is solved by using the ε-constraint method. The MOLFP problem is turned into a mixed integer linear programming(MILP) problem by setting up the total annual profit as the optimization objective and the average FE inputs per MJ biofuel and GHG emissions per MJ biofuel as constraints. In the case study, this model is used to design an experimental biofuel supply chain in China. A set of the weekly Pareto optimal solutions is obtained. Each non-inferior solution indicates the optimal locations and the amount of biomass produced, locations and capacities of conversion factories, locations and amount of biofuel being supplied in final markets and the flow of mass through the supply chain network(SCN). As the model reveals trade-offs among 3E criteria, we think the framework can be a good support tool of decision for the design of biofuel SC.; This paper presents a life cycle assessment(LCA) based biofuel supply chain(SC) analysis framework which enables the study of economic, energy and environmental(3E) performances by using multi-objective optimization. The economic objective is measured by the total annual profit, the energy objective is measured by the average fossil energy(FE) inputs per MJ biofuel and the environmental objective is measured by greenhouse gas(GHG) emissions per MJ biofuel. A multi-objective linear fractional programming(MOLFP) model with multi-conversion pathways is formulated based on the framework and is solved by using the ε-constraint method. The MOLFP problem is turned into a mixed integer linear programming(MILP) problem by setting up the total annual profit as the optimization objective and the average FE inputs per MJ biofuel and GHG emissions per MJ biofuel as constraints. In the case study, this model is used to design an experimental biofuel supply chain in China. A set of the weekly Pareto optimal solutions is obtained. Each non-inferior solution indicates the optimal locations and the amount of biomass produced, locations and capacities of conversion factories, locations and amount of biofuel being supplied in final markets and the flow of mass through the supply chain network(SCN). As the model reveals trade-offs among 3E criteria, we think the framework can be a good support tool of decision for the design of biofuel SC.
语种英语 ; 英语
内容类型期刊论文
源URL[http://ir.lib.tsinghua.edu.cn/ir/item.do?handle=123456789/144036]  
专题清华大学
推荐引用方式
GB/T 7714
刘喆轩,邱彤,陈丙珍,等. 基于生物燃料供应链分析框架的生命周期评价(英文)[J],2016, 2016.
APA 刘喆轩,邱彤,陈丙珍,LIU Zhexuan,QIU Tong,&CHEN Bingzhen.(2016).基于生物燃料供应链分析框架的生命周期评价(英文)..
MLA 刘喆轩,et al."基于生物燃料供应链分析框架的生命周期评价(英文)".(2016).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace