CORC  > 清华大学
PRIMARY STUDY ON CARBON DIOXIDE POWER CYCLE OF HTGR
Duan, Chengjie ; Yang, Xiaoyong
2010-05-10 ; 2010-05-10
会议名称ICONE16: PROCEEDING OF THE 16TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING - 2008, VOL 2 ; 16th International Conference on Nuclear Engineering ; Orlando, FL ; Web of Science
关键词REACTOR Engineering, Environmental Engineering, Mechanical Mechanics
中文摘要At present, power cycles used in HTGR are indirect steam Rankine cycle and helium Brayton cycle. Using water or helium as working fluid which transform thermal energy into mechanical energy for HTGR power cycle has many disadvantages. Steam cycle could choose steam system which is similar to conventional coal-fired power plant, but because of the limit of material and equipments, there is big temperature difference between the steam and the helium, that makes big loss of thermal power and lowers the cycle efficiency. Helium can reach a high temperature in HTGR Brayton cycle and it has good stability, but because of helium has big isentropic exponent and low density, it is difficult to compress and makes helium turbine has shorter blades and more stages than normal gas turbine([1,2]). Carbon dioxide has good thermal stability and physical properties. To avoid the reaction of CO2 with graphite and canning of fuel element at high temperature, it should be used in an indirect cycle as second loop working fluid. CO2 has appropriate critical pressure and temperature (7.38MPa, 304.19K) and can choose three types of cycle: supercritical cycle, subcritical-pressure cycle and trans-critical-pressure Cycle (CO2 sometimes works under supercritical pressure, some times under subcritical-pressure). Carbon dioxide cycle works in a high pressure, so it makes pressure loss lower. When CO2 works close to its critical point, its density become larger than other conditions, and not change very much, this pen-nits to reduce compress work. The thermal physical properties of carbon dioxide are totally different from helium due to CO2 works as real gas in the cycle. That causes the calculation of CO2 thermal physical properties, heat transfer and power cycle efficiency become difficult and need to be iterated([3,4,5]). A systematic comparison between helium and carbon dioxide as working fluid for HTGR has been carried out. An empirical equation had been selected to estimate the thermal physical properties of carbon dioxide. Three types of carbon dioxide power cycle have been analyzed and the thermal efficiency has been calculated. A detailed introduction to the basic calculation process of the CO2 cycle thermal efficiency had been presented in the paper.
会议录出版者AMER SOC MECHANICAL ENGINEERS ; NEW YORK ; THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
语种英语 ; 英语
内容类型会议论文
源URL[http://hdl.handle.net/123456789/18781]  
专题清华大学
推荐引用方式
GB/T 7714
Duan, Chengjie,Yang, Xiaoyong. PRIMARY STUDY ON CARBON DIOXIDE POWER CYCLE OF HTGR[C]. 见:ICONE16: PROCEEDING OF THE 16TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING - 2008, VOL 2, 16th International Conference on Nuclear Engineering, Orlando, FL, Web of Science.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace