Flow Structure and Heat Exchange Analysis in Internal Cooling Channel of Gas Turbine Blade
Szwaba, R., Kaczynski, P., Doerffer, P. and Telega, J.1
2016
关键词cooling internal blade channels heat exchange transient liquid crystal method Thermodynamics Engineering
中文摘要Steam pipelines applied in power units operate at high pressures and temperatures. In addition, to stress from the pipeline pressure also arise high thermal stresses in transient states such as start-up, shutdown or a load change of the power unit. Time-varying stresses are often the cause of the occurrence of fatigue cracks since the plastic deformations appear at the stress concentration regions. To determine the transient temperature of the steam along the steam flow path and axisymmetric temperature distribution in the pipeline wall, a numerical model of pipeline heating was proposed. To determine the transient temperature of the steam and pipeline wall the finite volume method (FVM) was used Writing the energy conservation equations for control areas around all the nodes gives a system of ordinary differential equations with respect to time. The system of ordinary differential equations of the first order was solved by the Runge-Kutta method of the fourth order to give the time-temperature changes at the nodes lying in the area of the wall and steam. The steam pressure distribution along pipeline was determined from the solution of the momentum conservation equation. Based on the calculated temperature distribution, thermal stresses were determined. The friction factor was calculated using the correlations of Churchill and Haaland, which were proposed for pipes with a rough inner surface. To assess the accuracy of the proposed model, numerical calculations were also performed for the thin-walled pipe, and the results were compared to the exact analytical solution. Comparison of the results shows that the accuracy of the proposed model of pipeline heating is very satisfactory. The paper presents examples of the determination of the transient temperature of the steam and the wall.
内容类型期刊论文
源URL[http://ir.etp.ac.cn/handle/311046/113066]  
专题工程热物理研究所_Journal of Thermal Science_期刊论文
作者单位1.[Takano, Hirofumi
2.Kamikihara, Daiyu
3.Ono, Daisuke
4.Nakao, Shinichiro
5.Yamamoto, Hideki
6.Miyazato, Yoshiaki] Univ Kitakyushu, Kitakyushu, Fukuoka 8080135, Japan.
推荐引用方式
GB/T 7714
Szwaba, R., Kaczynski, P., Doerffer, P. and Telega, J.. Flow Structure and Heat Exchange Analysis in Internal Cooling Channel of Gas Turbine Blade[J],2016.
APA Szwaba, R., Kaczynski, P., Doerffer, P. and Telega, J..(2016).Flow Structure and Heat Exchange Analysis in Internal Cooling Channel of Gas Turbine Blade..
MLA Szwaba, R., Kaczynski, P., Doerffer, P. and Telega, J.."Flow Structure and Heat Exchange Analysis in Internal Cooling Channel of Gas Turbine Blade".(2016).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace