题名管道移动机器人高精度直线行走问题研究
作者陶茂林
学位类别硕士
答辩日期2016-05-25
授予单位中国科学院沈阳自动化研究所
导师隋春平
关键词管道机器人 高精度行走 转向机构 反馈线性化 线结构光
其他题名Research on High Precision Straight-line Following of a Mobile Robot in Pipeline
学位专业机械制造及其自动化
中文摘要对于某大型激光核聚变装置,随着装置运行时间和能量的增加,其光传输管道表面会沉积大量颗粒污染物。为保证装置的正常运行,对光传输管道实施有效地清洗至关重要。采用管道移动机器人搭载激光清洗部件对管道进行在线清洗是一种有效的解决方法。机器人在这种方形直管道内作业时,为使扫描到管道四壁的激光光斑尺寸尽量一致从而保证最佳的清洗效果,要求机器人能精确地沿管道中心线行走,偏差≤±5mm。针对这一关键技术要求,本文从结构、控制以及导航三个方面对管道机器人的直线行走问题展开了系统研究,主要完成的工作如下:(1)对管道机器人的移动方式进行了研究,设计了机器人的转向与驱动机构,并基于Matlab优化工具箱以跟踪阿克曼转角为目标对转向机构进行了设计与优化,实现了结构与尺寸的双最优,从而从提高执行机构的精度上保证了高精度直线行走的顺利实现。(2)对管道机器人高精度直线行走的运动控制问题进行了研究,给出了问题的数学描述。基于机器人的运动学模型分别采用Backstepping方法和反馈线性化方法设计了纠偏控制器。利用Simulink对这两种控制器的性能进行了仿真分析,并进行了对比和优选。 (3)针对管道机器人的导航问题,对传统的基于测距传感器和单目视觉导航方法进行了研究,并指出了无法满足高精度导航的原因,在此基础上提出了一种新的基于双线结构光视觉传感器的导航方法,并推导了机器人在管道内的位姿偏差计算模型。通过上述三个方面的研究,分别解决了“机器人如何行走”、“机器人如何纠正偏差”以及“机器人如何检测偏差”这三个实现高精度直线行走所要解决的核心问题。最后搭建了实验平台,利用所研制的物理样机进行了多组模拟管道内以及沿直墙的行走实验。实验结果表明,机器人的稳定行走精度达到了±2mm,满足技术要求。由此验证了所设计的移动机构和纠偏控制器,以及所提出的导航方法,能实现管道机器人高精度直线行走,达到精确沿管道中心线行走的目的。
英文摘要For a high-power laser-fusion facility, as the running-time and power increase, large amounts of particle contamination will accumulate on the surface of the laser-beam propagation tubes. In order to guarantee the facility running normally, it’s crucial to clean the tubes effectively. Utilizing a pipeline robot with a laser-cleaning unit installed to clean the tubes online is an effective method. When the robot operates in the square and straight tube, in order to make laser stripe scan the tube symmetrically and then achieve maximum effectiveness, the robot is required to moving along the centerline of the tube precisely and the deviation should be ≤±5mm. Aiming at this requirement, this thesis performs a study on straight-line following of the robot from three aspects: mechanism, control and navigation. The main achievements are as follows: (1) Moving mechanism of the robot is studied and the driving mechanism is designed. Design and optimization of the steering mechanism for the robot is implemented based on Matlab optimal toolbox to meet the Ackermann principle accurately, then the configuration and parameters of the mechanism are optimized, which is conducive to increase the straight-line following precision. (2) The movement control problem of high precision straight-line following of the robot is analyzed, and the mathematical description is given. Correction controllers are designed based on kinematics model via the method of Backstepping and feedback linearization individually. Comparison analysis of the two controllers’s performance is carried out through Simulink and the better one is selected. (3) In terms of the robot’s navigation, the conventional approaches of using distance measuring sensors and monocular vision are analyzed and the drawbacks of those methods are point out. What is more, a new navigation method based on double line-structured light visual sensor for measuring the robot’s pose accurately is put forward and the calculation model of pose deviations is deduced. Through the research of three aspects described above, the key problems of “ How does the robot move ”, “ How does the robot correct deviation ” and “ How does the robot detect deviation ” are solved. Experimental platform is set up finally and a number of experiments that moving in the model tube and along the straight wall have implemented by the prototype robot. The experiment results show that, the robot can follow a straight line precisely and the stable deviation is less than ±2mm, which meets the requirement redundantly. Thus, the results indicate that the designed moving mechanism, correction controller and the proposed navigation method for the pipeline robot can make the robot achieve high precision straight-line following, and move along the centerline of the propagation tube precisely.
语种中文
产权排序1
页码88页
内容类型学位论文
源URL[http://ir.sia.cn/handle/173321/19664]  
专题沈阳自动化研究所_装备制造技术研究室
推荐引用方式
GB/T 7714
陶茂林. 管道移动机器人高精度直线行走问题研究[D]. 中国科学院沈阳自动化研究所. 2016.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace