题名基于全光纤多程相位调制的光谱控制技术研究
作者井媛媛
学位类别硕士
答辩日期2016
授予单位中国科学院上海光学精密机械研究所
导师范薇
关键词光纤光学 啁啾脉冲放大 光谱控制 相位调制
其他题名Spectrum Control Based on All-fiber Multi-Pass Phase Modulation Structure
中文摘要随着光纤光学及波导理论的高速发展,惯性约束核聚变激光驱动装置的前端系统逐渐实现全光纤化。高功率激光驱动装置的前端系统主要功能是提供具有时间波形控制能力、光谱控制能力、偏振控制、时间同步、近场强度控制能力以及信噪比控制能力的多档脉冲输出。本文提出了基于全光纤多程相位调制的光谱控制技术研究方法,针对前端系统同一种子源实现多档脉冲输出进行可行性探究实验。 论文的主要工作包括以下几个方面: (1) 对多程相位调制的原理进行理论分析,建立多程相位调制的理论模型,并分析了调制圈数、调制深度、调制信号宽度、调制信号波形以及光脉冲和电调制信号的时间同步等参数对输出光谱特性的影响,为后续多程相位调制实验的展开奠定理论基础。 (2) 对多程相位调制的实验平台进行了改进,提升了系统调制深度。对种子源模块、环形腔模块、时间同步模块、调制信号产生模块、调制结果测量模块以及脉冲压缩模块进行了详细介绍。 (3) 开展了全光纤多程相位调制的实验研究。实验将光谱宽度为0.03nm的光脉冲展宽至2.255nm。经光栅压缩器压缩后,脉冲宽度由80ps压缩至26ps。验证了多程相位调制系统为啁啾脉冲放大提供种子源的可能性。 (4) 实验验证了理论模拟得到的结论,即调制深度越大、调制圈数越多,输出光谱宽度越宽;改变电调制信号与光脉冲的相对时间会使输出光谱特性发生改变;改变相位调制信号波形可以得到不同的输出光谱,印证了多程相位调制系统具有任意光谱控制的能力;实验还对系统的同步精度进行了测量与分析,系统同步精度不超过5ps,但随调制圈数增加,光信号幅值抖动增大使同步精度降低,导致光谱有效调制量降低,不利于系统稳定性。
英文摘要With the rapid development of fiber optics and waveguide theory, the front-end system of inertial confinement fusion laser driver is developing towards all-fiber system. The front-end of high power laser has the abilities of controlling the temporal waveform, spectrum, pulse polarization, synchronization between different seed pulses, near field intensity as well as the signal to noise ratio. Based on all-fiber multi-pass phase modulation, this paper carried out research of spectrum control in order to realize pulses with different width from the same seed pulse. This paper focuses on the all-fiber multi-pulse phase modulation discussing the research as follows: (1) Introduce the basic theories of the multi-pass phase modulation and established its simulation model. Analyzed the influence of key parameters such as modulation times, modulation depth, pulse width of modulation signal, pulse shape of modulation signal and synchronization between optical pulse and modulation signal, which lays the foundation of the experiment. (2) Advanced the experiment setup, improved the modulation depth. Introduced the structure and function of seed pulse part, ring cavity part, synchronization part, modulation signal part, measurement part and pulse compression part. (3) Through the experiment, the optical pulse is broadened from 0.03nm to 2.255nm. After compression from the grating compressor, the pulse width is decreased from 80ps to 26ps. This result shows that multi-pass phase modulation system can provide seed pulse for chirped pulse amplification. (4) The experiment results agree with the simulation results, that is, first, the deeper the modulation depth is or the more roundtrips there are, the bandwidth of the output spectrum is broader. Second, altering the delay time between the modulation signal and optical pulse will change the characteristics of the output spectrum. Third, different modulation signal lead to different output spectrum, which demonstrated the ability of controlling spectrum flexibly. Finally, the synchronization time between optical pulse and modulation signal is less than 5ps. However, as the increase of the roundtrips, the stability of the optical pulse will decrease, which will result in the decrease of the stability of the whole system
语种中文
内容类型学位论文
源URL[http://ir.siom.ac.cn/handle/181231/16991]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
井媛媛. 基于全光纤多程相位调制的光谱控制技术研究[D]. 中国科学院上海光学精密机械研究所. 2016.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace