题名中红外宽调谐激光材料TM∶II-VI的制备及其性能研究
作者王向永
学位类别博士
答辩日期2016
授予单位中国科学院上海光学精密机械研究所
导师杭寅
关键词中红外激光 TM:II-VI 高温热扩散 光谱特性 能量传递
其他题名Study on the preparation and properties of transition metal doped II-VI broadly tunable Mid-IR laser materials
中文摘要中红外固体激光器(2~5μm)在卫星遥感、红外医疗、军事对抗、分子监测等领域具有非常重要的应用,是固体激光器发展的一个重要方向。II-VI族化合物(ZnSe、ZnS等)具有光学声子截止能量低,导热性能好、物理化学性能稳定、中红外透过率高等优点是作为中红外固体激光器增益介质优良的基质材料。过渡金属离子TM2+(Cr2+、Fe2+等)掺杂的II-VI族化合物材料在中红外波段具有很宽的增益带宽,大的吸收和发射截面,并且还具有强而宽的吸收和发射带,是具有重要应用前景的中红外宽调谐增益介质,成为近年来中红外固体激光材料研究热点。本文以Cr和Fe两种离子单掺和Cr、Fe及Co、Fe离子共掺的ZnSe和ZnS为研究对象,详细研究了上述材料的制备方法、材料表征、光谱和激光特性和共掺离子间能量传递机理等,主要研究工作如下: 1.采用高温热扩散法制备了Cr/Fe:ZnSe/ZnS多晶样品,研究了扩散离子浓度和扩散时间以及扩散温度之间的关系。样品厚度为2mm时,Cr:ZnSe、在900℃时最佳的扩散时间为6~10天;Cr:ZnS、Fe:ZnSe在950℃最佳扩散时间分别为为5~9天、10~13天;Fe:ZnS在1000℃温度时最佳扩散时间为9~12天。对样品进行了XRD粉末衍射物相分析,结果表明离子掺杂后对ZnSe和ZnS的晶格参数影响很小。用光学显微照片对样品表面形态进行了表征。 2.研究了Cr:ZnSe和Cr:ZnS的吸收和荧光光谱。Cr:ZnSe和Cr:ZnS吸收光谱中心波长分别为1770nm和1670nm,对应于Cr2+的5E→5T2能级跃迁,吸收系数分别为11cm-1和10cm-1,二者都存在Cr的离子价态迁移吸收,并且吸收边都发生了红移。荧光光谱的中心波长分别位于2330nm和2240nm附近,5E→5T2跃迁荧光寿命分别为7.8μs和5μs。 3.研究了Fe:ZnSe和Fe:ZnS的吸收和荧光光谱。Fe:ZnSe和Fe:ZnS吸收光谱的中心波长分别位于3μm和2.9μm,吸收截面分别为0.97×10-18cm2和1.3×10-18cm2。Fe离子在ZnSe和ZnS中存在有价态迁移吸收,但是吸收边并没有发生明显的移动。Fe:ZnSe和Fe:ZnS在3~4.5μm范围内都能检测到荧光信号,后者相对前者荧光光谱向短波方向移动了~100nm。Fe2+在室温下存在很严重的温度淬灭效应。 4.开展了Cr:ZnSe激光实验研究工作。当泵浦功率为1.49W时,Cr:ZnSe获得最大的激光输出功率为388mW,光光转换效率达到了26%。室温下,对Fe:ZnSe用HF激光器进行泵浦,当抽运光的能量为100mJ时,在室温下获得了15mJ的4.3μm激光输出。光光转化效率为15%,斜效率达到了18%。 5.采用阶梯温度热扩散法制备了Cr,Fe:ZnSe/ZnS、Co,Fe:ZnSe/ZnS多晶样品,扩散时间为15天。对掺杂离子浓度进行了测试。对样品进行了XRD粉末衍射物相分析,离子掺杂对ZnSe和ZnS的晶格参数影响不是很大。用光学显微照片和SEM图像对样品表面进行了表征。 6.测试分析了Cr,Fe:ZnSe/ZnS的光谱测试性能。Cr,Fe:ZnSe在1770nm和3μm附近都有吸收,吸收系数分别为9cm-1和6.8cm-1。Cr,Fe:ZnS吸收中心波长分别位于1.67μm和2.9μm附近,吸收系数分别为13.03cm-1和6.67cm-1。由于Cr离子的掺杂导致了吸收边发生了红移。在Cr2+的吸收范围内激发,均检测到了Fe2+的荧光,存在Cr2+→Fe2+能量转移,传递效率跟离子浓度比例有关。 7.通过对Co,Fe:ZnSe/ZnS光谱的研究,证实Co2+和Fe2+之间也可以存在共振能量传递。由于Co2+和Fe2+在ZnSe、ZnS的发射和吸收谱的混叠程度更大,其能量传递的速率和效率更高,更有利于通过能量传递途径实现激光泵浦。
英文摘要Mid-infrared solid-state lasers operating in the range of 2~5μm can be widely used in remote sensing, military confrontation, molecular detection, etc., and have been an important direction for solid-state lasers. II-VI materials, such as ZnSe and ZnS, exhibiting lower phonon energy, good thermal conductivity, stable physical and chemical properties, high transmittance in the mid-infrared range, and other advantages, can be used as the ideal host materials for mid-infrared solid-state lasers. Transition metal (TM2+, e.g. Cr2+ or Fe2+) doped II-VI semiconductors are widely tunable promising mid-infrared gain medium, due to their broadly bandwidth, big absorption and emission section with strong and ultra-broad absorption and emission bands in the mid-infrared range of optical, attract more and more attention in the mid-infrared solid-state laser materials research. In this thesis, we take Cr / Fe doped ZnSe / ZnS and Cr, Fe and Co, Fe co-doped ZnSe/ZnS as the objects of study, investigating the preparation, spectroscopy and laser characteristics of those materials, as well as energy transfer mechanism between different ions. The main contents of this are as follows: 1.Cr/Fe:ZnSe/ZnS polycrystalline samples were prepared by thermal diffusion method, and the relationship between ion concentration and diffusion time and temperature was studied. For 2mm thick samples, the optimal diffusion time is 6 to 10 days for Cr:ZnSe at 900℃. For Cr:ZnS, the time is 5 to 9 days at 950℃, for Fe:ZnSe, is 10~13 days at 950℃, and the optimal diffusion time is Fe:ZnS is 9 to 12 days at 1000℃. XRD diffraction phase analysis was executed, and the results show that the impact of ion doping on the lattice parameter of ZnSe and ZnS is very small. The surface morphology of the samples was characterized by optical micrographs. 2.Absorption and fluorescence spectra of Cr:ZnSe and Cr:ZnS were studied. The center wavelength of absorption for Cr:ZnSe and Cr:ZnS are 1770 and 1670nm, respectively, corresponding to the absorption coefficient of 11 and 10 cm-1. Both of the two materials show TM ion charge state transfer and the absorption edges are red shift. The center wavelength of emission spectra are located at about 2330 and 2240nm due to the 5E→5T2 transition. And the life time are 7.8μs and 5μs, respectively. 3.Absorption and fluorescence spectra of Fe:ZnSe and Fe:ZnS were studied. The center wavelength of absorption for Fe:ZnSe and Fe:ZnS are 3 and 2.9μm with absorption section 0.97×10-18cm2 adn 1.3×10-18cm2, respectively. Fe ion shows a charge state absorption, but no apparent absorption edge shifted. Fluorescence single for Fe:ZnSe and Fe:ZnS can be detected in the range of 3~4.5μm, and fluorescence spectral of the later shifts toward short wavelength ~100nm. Fe2+ ion shows very serious temperature quenching effect at room temperature. 4.Room temperature laser experiments of Cr:ZnSe was executed. We obtained a maximum output of 388mW with a 1.49W laser pump power for Cr:ZnSe laser, and the light-light tranfer efficiency is 26%. Fe:ZnSe laser was pumped by HF laser at room temperature, and 15mJ energy output operating at 4.3μm was obtained under the 100mJ pump energy. The light-light transfer efficiency is 15%, with 18% slop efficiency. 5.Cr,Fe:ZnSe/ZnS、Co,Fe:ZnSe/ZnS polycrystalline were prepared by thermal diffusion method with a 15days diffusion time. Doping ions concentration was tested by ICP-AEX. XRD diffraction phase analysis shows that the impact of doping ions on ZnSe and ZnS lattice parameters is very small. The surface morphology of the samples was characterized by optical micrographs and SEM images. 6.Absorption and fluorescence spectra of Cr,Fe:ZnSe/ZnS were performed. The two absorption band centered at 1.77 and 3.0μm with the absorption coefficients of 9 and 6.8cm-1, respectively. The center wavelength of Cr,Fe:ZnS absorption spectrum are 1.67 and 2.9μm corresponding to 13.03 and 6.67 cm-1 absorption coefficient. The absorption edges are red shift due to the Cr doping. The Fe2+ fluorescence was detected under the Cr2+ excitation, proving the existence of Cr2+→Fe2+ energy transfer. And the transfer efficiency related to concentration ratio of doping ions. 7.Co,Fe:ZnSe/ZnS spectroscopy was studied and the results reveal that there exists resonant energy transfer between Co2+ and Fe2+. Since the large overlap between the absorption spectrum, the energy transfer rate is much faster with high transfer efficiency. Thus, it is more conductive to the realization of laser pumping through energy transfer.
语种中文
内容类型学位论文
源URL[http://ir.siom.ac.cn/handle/181231/15962]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
王向永. 中红外宽调谐激光材料TM∶II-VI的制备及其性能研究[D]. 中国科学院上海光学精密机械研究所. 2016.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace