题名半导体泵浦固体激光器驱动与控温系统研究
作者赵智亮
学位类别博士
答辩日期2007
授予单位中国科学院上海光学精密机械研究所
导师朱健强
关键词DPSSL 恒流驱动 高精度控温 智能控温 端泵耦合 梯度补偿控温 倍频
其他题名Research on the Diode Pump Solid-State Laser Driver and Temperature Control System
中文摘要随着半导体激光技术和固体激光材料的飞速发展,采用半导体激光器作为泵浦源的全固态激光器为固体激光技术带来了一次革命性的突破,自上个世纪末以来半导体泵浦固体激光器(Diode Pumped Solide-State Laser,DPSSL)正在成为激光研究领域中的一个重要课题。半导体泵浦固体激光器以其结构紧凑、整体性强、密封性好、工作稳定、转换效率高、光束质量好、输出稳定、使用寿命长等一系列优点在科研、军工、国防、航空航天、生物医药、光谱分析、工业生产、信息科学、环境保护和娱乐文化等领域日益得到广泛深入的应用。 论文在全面分析半导体泵浦固体激光器及其驱动源和控温系统发展与研究现状的基础上,对半导体泵浦固体激光器理论模型与温度特性及恒流驱动源和控温系统特性对DPSSL的影响进行了深入的理论分析和实验研究。论文研究设计了最大驱动电流可达10A,电流输出峰峰纹波仅为±0.14%的DPSSL高稳定恒流驱动源。可以满足大功率单管半导体激光器和新型单管串联集成半导体激光模块驱动要求,驱动源具有开机关机电流缓变保护、限流保护、反向大电流抑制保护和工作温限保护等自保护功能,而且在驱动源中还研究设计了外控模拟调制和TTL方波调制接口,可以接受0~5V模拟信号对激光器输出功率的模拟调制,可以接受外控TTL方波调制频率达20kHz。采用高精度温度电压转换电路、双点温度补偿差动放大温度测量电路结合参数再调整PID控制方法高精度调整半导体珀尔帖元件输出功率,实现高精度DPSSL控温系统,其温度调节最大输出功率15W,控温精度可达±0.1℃。采用模糊决策的方法设计了DPSSL最佳工作温度智能设置系统,采用模糊推理结合数字PID控制算法设计了自适应智能温度控制系统。由最佳工作温度智能设置系统和自适应智能温度控制系统共同组成了DPSSL工作温度智能在线控制系统并对系统行了仿真,结果表明该智能控温系统控温精度可达±0.05℃,同时该系统还具有良好的动态、静态特性和在线自整定功能。 论文依据对DPSSL模型和温度特性的理论分析,结合激光晶体与倍频晶体特性设计了可根据DPSSL工作条件调整的单管半导体端泵浦高效耦合聚焦系统和平凹直腔与腔内倍频的稳定高效连续单管端泵倍频DPSSL结构并选择了合理的控温方式与控温精度。采用高稳定恒流驱动源驱动大功率单管半导体激光器作为泵浦源,结合双点控温方式和高精度控温系统,研制了大功率单管LD端泵腔内倍频532nm绿光激光器,在25.5%的高光-光转换效率下得到了输出功率稳定性达±0.95%输出功率950mW的连续激光输出。采用高稳定恒流驱动源驱动大功率单管半导体激光器作为泵浦源,结合三点控温方式和智能控温系统,研制了大功率单管LD端泵浦腔内倍频473nm蓝激光器,在11.1%的高光-光转换效率下得到了输出功率稳定性达±0.90%输出功率524.6mW的连续激光输出。采用稳定高效平凹直腔结构和腔内倍频方式结合声光调Q设计了稳定高效的高功率准连续532nm绿光DPSSL谐振腔结构。针对高功率倍频激光器大尺寸倍频晶体研究设计了梯度补偿法控温装置,并采用该装置控温KTP晶体得到脉冲宽度110ns重复频率10kHz输出功率31.6W稳定高效的532nm准连续绿光输出,输出功率稳定性达±0.66%,光-光转换效率为18.1%,光束质量因子M2=4.3。
英文摘要With the development of laser material and diode laser technology, the diode pumped solid-state laser (DPSSL) is becoming one of significant item in the laser researching field. DPSSL has a lot of advanced characteristic such as compacting structure、stabilization、high efficiency、high beam factor、long lifetime etc.. so the DPSSL is applied to more fields such as science researching、war industry、navigate and spaceflight、national defence、biology and medicine、spectrum analysis、information and communication、circumstance protecting and amusement etc.. Based on analyzing the phylogeny and researching actuality of diode pump solid state laser and the driver、temperature control system, this dissertation research the theory model of DPSSL、temperature characteristic of DPSSL and the influence of constant current driver characteristic and temperature control system characteristic on DPSSL, and then the experimental research is carried out. The high stability constant current driver for DPSSL is designed for driving the high power single laser diode and the new high power module of single laser diode series integrating. The max current of driver is up to 10A and the peak-peak ripple of current is blow ±0.14%. The protect circuit is designed for long lifetime of laser diode such as on and off delay of driver、max current limited、reverse current limited and max operating temperature limit of laser diode. In addition, the input circuit of analog and TTL modulating signal is designed in this driver for receiving the exterior modulating signal, the exterior modulating analog signal could be the 0~5V voltage signal and the frequency of exterior TTL modulating signal can be up to 20kHz. The high precision temperature controlling system of DPSSL includes the transition circuit of temperature and voltage、twin point temperature compensate circuit、differential amplify circuit、parameter adjustable of PID control circuit and power output circuit. This temperature controlling system can control the power of Peter component to high precision adjust operating temperature of DPSSL, and the max temperature adjusting power is 15W, the precision of temperature controlling is up to ±0.1℃. When the temperature of 532nm green light continuous wave DPSSL is controlled by this high precision temperature controlling system, the efficiency and output power stability is increased greatly. This dissertation designs the intelligence temperature controlling system to control operating temperature of DPSSL that requires higher precision and online self adjusting such as 473nm blue light continuous wave DPSSL. This intelligence temperature controlling system includes the fuzzy decision-making DPSSL setting temperature self-adjusting system and the self-tuning fuzzy PID temperature controlling system. The precision of intelligence temperature controlling system is up to ±0.05℃, The system has online self-adjusting function and good dynamic characteristic、static characteristic. Based of theory model of DPSSL、temperature characteristic of DPSSL and the influence of constant current driver and temperature control system characteristic on DPSSL, this dissertation designs the high efficiency and adjustable coupling focus system of pump light for the single laser diode end-pumped solid state laser and chooses the proper precision of temperature controlling and the proper mode of temperature controlling. The high efficiency and stability flat-concave and intracavity frequency-doubling resonance structure is adopted in single laser diode end-pumped 532nm green light and 473nm blue light solid state laser. They are driven by the high stability constant current driver. When two points temperature of 532nm green light laser is controlled by the high precision temperature controlling, the output power of the 25.5% high optics-optics transition efficiency 532nm green light laser is 950mW, the power stability of this laser is up to ±0.95%. When three points temperature of 473nm blue light laser is controlled by the intelligence temperature controlling system, the output power of the 11.1% high optics-optics transition efficiency 473nm blue light laser is 524.6mW, the power stability of this laser is up to ±0.90%. The dissertation presents the method of grads-compensate temperature controlling to adjust the operating temperature of frequency doubling crystal. This temperature controlling method debases the inside and outside temperature grads of crystal to compensate the phase mismatching and thermal lens of frequency doubling crystal. The high efficiency flat-concave intracavity frequency-doubling resonance structure and acoust-optic Q-switching is adopted to generated a maximum 532nm green average power of 31.6W at 110ns pulse width and 10kHz repetition rate when pumped power was174.6W. The optic-optic transition efficiency is up to 18.1%, power stability is up to ±0.66% and the beam quality factor of green laser M2=4.3.
语种中文
内容类型学位论文
源URL[http://ir.siom.ac.cn/handle/181231/15606]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
赵智亮. 半导体泵浦固体激光器驱动与控温系统研究[D]. 中国科学院上海光学精密机械研究所. 2007.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace