题名半导体激光反馈光注入式硅微机械谐振传感技术的研究
作者王少卿
学位类别博士
答辩日期2009
授予单位中国科学院上海光学精密机械研究所
导师王向朝
关键词硅微谐振器 谐振传感器 半导体激光器 反馈光注入
其他题名Research on silicon micromechanical resonant sensing technique based on semiconductor laser subject to optical feedback
中文摘要以谐振为敏感机理的硅微谐振传感器(Silicon Microresonator Sensor)一直是国内外MEMS (Microelectromechanical System)传感器的研究重点之一。压力、加速度、角速度和微质量等硅微谐振传感器被广泛应用于汽车工业、工艺控制、医学和科学仪器等领域。其中,采用光激励、光检测工作方式的硅微谐振传感器,兼有光纤、微结构、谐振传感器的优点,实现了多种先进技术的优势互补,得到了该领域研究者的更多关注。同时,随着反馈光注入半导体激光器相关理论和实验研究的不断深入,人们研究的焦点也从探求光注入导致的非线性现象的物理根源发展到将其应用于混沌保密通信和精密测量等领域。激光器出射光强对反馈光相位变化的高敏感性,使得光激励硅微谐振器谐振的过程可以与谐振器反馈光调制激光光强的过程互相耦合。这种耦合效应为全光硅微机械谐振传感技术的研究提供了新思路。本论文将反馈光注入式半导体激光器引入硅微机械谐振传感技术的研究中,在半导体激光器复合腔模稳定性、光激励微谐振器起振机理、硅微悬臂梁反馈光注入下激光器动态特性以及硅微谐振器谐振特性的检测等方面开展研究,概述如下: 1. 在小注入电流条件下,利用渐进分析法研究了反馈光注入下半导体激光器复合腔模的稳定性。提出了复合腔模在其相空间内存在一个稳定模式区域,复合腔模在该模式稳定区域内出现的概率最大,并通过计算载流子浓度的庞加莱截图验证了上述模式稳定区域的存在。利用渐进分析法求解了复合腔模的鞍结分岔和霍普夫分岔边界条件,并与数值计算的载流子浓度分岔图进行了比对,从而验证了小注入电流条件下渐进分析法的可靠性和准确性。 2. 建立了用于分析镀膜硅微悬臂梁多层结构的等效近似模型,并且运用热扩散理论研究了硅微悬臂梁光热温度分布场,然后建立了计算硅微悬臂梁谐振振幅的理论模型。并根据前述理论模型对镀膜硅微悬臂梁谐振特性进行了分析和计算,并根据计算结果优化了悬臂梁结构参数。分析结果表明铝和铬均为合适的硅微悬臂梁镀膜材料。同等激励条件下,当金属镀层达到最佳镀膜厚度时,硅微悬臂梁谐振振幅最大。 3. 研究了光强调制半导体激光器的反馈光注入特性。建立了由硅微悬臂梁和反馈光注入半导体激光器组成的谐振系统。提出了硅微悬臂梁反射光注入半导体激光器的理论模型,并依据该模型分析了激光器的动态特性。数值计算了反馈光注入下激光器输出光强随时间的变化,并在理论上预见了输出光强存在峰间脉冲。在实验中同样观察到了上述峰间脉冲,提出的理论模型得到了有效验证。最后讨论了该谐振系统在传感领域的应用前景。 4. 利用正弦电流驱动的扬声器声激励硅微悬臂梁谐振,并利用自混合干涉仪研究了该硅微悬臂梁的谐振特性。通过相位重构方法处理测得的自混合干涉信号,最终得到了该硅微悬臂梁的一阶谐振频率、谐振振幅、频响曲线的半高全宽(FWHM)和品质因子(Q)等谐振特性参数,并与正弦相位调制干涉仪的测量结果进行了比对。
英文摘要Silicon microresonator sensor is a current research emphasis of Microelectromechanical System (MEMS) sensors. Microresonator sensors for pressure, acceleration, angular rate, and micro-mass are used in great numbers in the auto-mobiles industry, in process control, in the medical field, and for scientific instrumentations. Especially those microresonator sensors able to be optically excited and detected have attracted intensive interests because they combine the advantages of optical fiber, micromachined structure with those of resonator sensors at the same time. Meanwhile, with the profound theoretical and experimental research on the semiconductor laser (SL) subject to optical feedback in recent years, the research emphasis is developed from studying the physical essence of the nonlinear behaviors induced by optical feedback to applying these behaviors to chaotic secure communication, precision measurement, and so on. The intensity of laser outgoing light is highly sensitive to the phase-change of feedback light, thus the optical excitation of silicon microresonator by intensity-modulated laser can be coupled with the modulation of light intensity caused by optical feedback from microresonator. That coupling effect provides a new idea for the research of all optical silicon micromechanical sensing technique. In this dissertation, the SL subject to optical feedback is applied to the research of microresonator sensing technique. The stability of external cavity modes (ECMs) of SL subject to optical feedback, optical excitation mechanism of microresonator, dynamics of SL subject to optical feedback from silicon microcantilever, and the detecting method of microresonator resonant characteristics are studied in the dissertation. The main works are as follows. i. Considering the condition of weak injection current, the dynamics of SL subject to optical feedback is studied analytically by means of asymptotic analysis method. The stabilities of external cavity modes (ECMs) are analyzed, and the stable regions of these ECMs are proposed and verified by numerically calculating the Poincaré section of the SL’s carrier density. The Saddle-Node and Hopf bifurcations boundaries of the ECMs are calculated by the asymptotic analysis method. These boundaries are agreed with the numerically calculated bifurcation diagram of SL’s carrier density. The asymptotic analysis method with weak injection current is verified ii. An equivalent parameter model for analyzing the multi-layer structure of metal-coated silicon microcantilever is established, and the photothermal temperature distribution of the microcantilever is studied by means of heat diffusion theory. A theoretical model for calculating the resonant vibration amplitude of silicon microcantilever is established, and resonant characteristics of the metal-coated microcantilever are analyzed and calculated by the model. Based on the above analysis the structure parameters of silicon microcantilever are optimized. The analytical results also prove that both Cr and Al are the proper coating materials for silicon microcantilever. Under the same exciting condition, the vibration amplitude is greatest when the thick of metal film equals to the optimum film thickness. iii. The characteristics of intensity-modulated SL subject to optical feedback are studied. A resonant system, which is composed of silicon microcantilever and semiconductor laser subject to optical feedback, is established. A theoretical model for SL subject to optical feedback from a silicon microcantilever is proposed, and the dynamics of the SL is analyzed based on the theoretical model. The temporal evolution of the light intensity of the SL is investigated numerically, and the interspikes of the light intensity are predicted theoretically. These interspikes are also found in the experiment. The validity of the theoretical model is verified. The resonant system’s potential application in resonant sensing technique is discussed. iv. A self-mixing interferometer is used to investigate the resonant characteristics of a microcantilever, which is excited by a loud-speaker driven by sinusoidally modulated current. The detected self-mixing signal is processed by using a phase reconstruction method. The 1st-order resonant frequency, the vibration amplitude, the FWHM of the frequency response curve, and the quality factor Q of the microcantilever are obtained. These measurement results are compared with the results obtained by a sinusoidal phase modulating (SPM) interferometer.
语种中文
内容类型学位论文
源URL[http://ir.siom.ac.cn/handle/181231/15281]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
王少卿. 半导体激光反馈光注入式硅微机械谐振传感技术的研究[D]. 中国科学院上海光学精密机械研究所. 2009.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace