CORC  > 电工研究所  > 其他部门  > 博士学位论文
题名微型机器人的磁定位方法及驱动方式的研究; 微型机器人的磁定位方法及驱动方式的研究
作者1王喆,电工研究所
学位类别博士
答辩日期2009-06-30
授予单位中国科学院电工研究所
导师1宋涛,电工研究所
关键词磁定位 永磁块 偶极子 差分结构 旋转磁场 微型机器人 Magnetic localization Permanent magnet Dipole Difference structure GA Rotating magnetic field, Micro-robot
其他题名微型机器人的磁定位方法及驱动方式的研究
中文摘要微型医疗机器人可以实现人体血管、肠道内的窥视、诊断、注药和修补等功能,但微型机器人定位的精确性、驱动的灵活性等存在一定的问题。本文就一种仿趋磁细菌的微型机器人的定位方法和磁性微型机器人的驱动方式进行了深入的研究,提出了一种可以应用在高背景磁场下的差分磁定位方法以及实现了一种外旋转磁场的驱动方式。此种差分磁定位方法和外旋转磁场的驱动方式将为微型机器人,尤其为医疗微型机器人的应用提供一种新的思路。 论文的主要研究内容如下: 针对高背景均匀磁场或对称磁场,论文提出了一种差分磁定位方法。该方法在背景磁场相等的空间对称位置点处布置磁传感器,采用差分方式,将传感器组中相等的背景磁场作为共模信号去除,得到用于定位的永磁块的磁信号差值。求解包含永磁块位置和姿态信息变量的差分磁定位方程组,即可获得永磁块的位置和姿态信息,完成定位过程。依据差分磁定位方法和算法,进行了永磁块定位的仿真和实验,验证了差分磁定位方法和算法的有效性。 将高背景磁场下的差分磁定位方法应用到仿趋磁细菌的微型机器人系统上,设计了磁定位系统。磁定位系统由差分结构的传感器阵列、信号处理模块和算法系统组成。传感器阵列采用八组差分结构的传感器组以及差分放大电路组成;信号处理模块包括同相放大电路、低通滤波电路以及A/D转换电路;算法系统根据检测到的磁信号和差分磁定位算法计算得到永磁块的位置和姿态。并在磁定位系统上进行了永磁块的离线测量实验,实验结果表明该磁定位系统在均匀背景磁场下,可以很好对永磁块进行位置和姿态的定位。在我们提出的主动螺旋推进和外磁场导向组合驱动方式的仿趋磁细菌的微型机器人系统平台上,进行了微型机器人的“L”型轨迹的在线测量实验,结果表明微型机器人可以按照预设的期望轨迹运行,微型机器人系统平台为可用的。微型机器人的磁定位结果表明,在导向磁场下,磁定位系统可以确定微型机器人的姿态和大致位置。 针对微型机器人的小型化和姿态可控,依据我们提出的一种空间任意旋转轴的旋转磁场发生原理,制备旋转磁场实验发生装置,并制备了实验用磁性微型机器人。采用旋转磁场实验发生装置,完成磁性微型机器人的驱动实验。实验表明微型机器人在外旋转磁场驱动下按照旋转轴方向很好的运行。 Medical micro-robot is playing a more and more important role in the aspects of improving human health. Using medical micro-robot, peep, diagnosis, injection and repair can be achieved in human blood vessels and Intestinal vessels. But the positioning accuracy and flexibility of driving are not yet ripe. In this paper, a kind of positioning methods about magnetotactic bacterium-like micro-robot and driven methods about magnetic micro-robot are deeply studied. A differential magnetic field positioning method, which can be applied to a high background magnetic field, and a driven method by the outside rotating magnetic field are presented. This differential magnetic positioning method and driven method will provide a new way for driving micro-robot, especially for the application of medical micro-robot. The main research of our paper is as follows: The current methods of magnetic positioning method are carried out in the orientation magnetic field, not related to the high background magnetic field. For high background uniform magnetic field or symmetrical magnetic field, thesis proposes a differential magnetic positioning method. In this method, we set magnetic sensors on the symmetrical points, where magnetic field in the background is same, adopt the differential form, regard the same background magnetic field in sensor group as common-mode signal to remove and obtain the difference value of magnetic signal for positioning magnet finally. Solve the differential equations including the information about the location and posture of magnet, then we can obtain the location and posture of magnet and complete the positioning process. According to differential magnetic positioning method and algorithms, we have the simulation and experiments about positioning magnet. The results of simulation and experiments verify their effectiveness. The magnetism location system of micro-robots system is completed according to applying differential magnetic positioning method in high background magnetic field to magnetotactic bacterium-like micro-robot system. The magnetism location includes sensors array, signal handling module and algorithm system. The sensors array consists of eight groups of difference structure sensors. The signal handling module has the following components: differential amplifier circuits、noninverting amplifier circuits、low-pass filter circuits and A/D conversion circuits. The algorithm system uses the detected magnetic signal and the differential magnetic positioning algorithm to compute the location and posture of magnet. We have offline experimets of magnet in the magnetic location system. The results show that this magnetic location system can obtain a very precise location and posture of magnet in the uniform background magnetic field. Furthermore, “L”type trajectory driven online experiments for micro-robots are completed on magnetotactic bacterium-like micro-robot system platform by the combination drive of screw propeller and the of external magnetic field oriented. The results show that the micro-robot are operated under the precise expected trajectory and the platform system is usable. The positioning results of magnetic micro-robot show that the magnetic micro-robot positioning system can determine the posture and general location of micro-robot in the magnetic field orientation. For small-scale of micro-robot and control of posture, we produce the experimental device of rotating magnetic field and magnetic micro-robot for experiments according to the principle of magnetic field with arbitrary axis of rotation. Using rotating magnetic field generation device, we complete the driven experiments of micro-robot by magnetic experiments. The results show that the micro-robots can run very good driven by outside rotating magnetic field in accordance with the direction of rotation axis.
语种中文
公开日期2010-10-18
页码98
内容类型学位论文
源URL[http://ir.iee.ac.cn/handle/311042/6806]  
专题电工研究所_其他部门_其他部门_博士学位论文
推荐引用方式
GB/T 7714
1王喆,电工研究所. 微型机器人的磁定位方法及驱动方式的研究, 微型机器人的磁定位方法及驱动方式的研究[D]. 中国科学院电工研究所. 2009.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace