CORC  > 电工研究所  > 其他部门  > 博士学位论文
题名永磁电动式磁悬浮的研究; 永磁电动式磁悬浮的研究
作者1李春生,电工研究所
学位类别博士
答辩日期2007-12-07
授予单位中国科学院电工研究所
导师1严陆光,电工研究所
关键词电动式 磁悬浮列车 永久磁体 导体板 直线型Halbach磁体 结构优化 磁化方向的优化 动态特性 实验装置 机械解耦 Electrodynamics suspension(EDS) Maglev PM(Permanent magnet) Conducting sheet Linear Halbach array Structure optimization Optimization of magnetization direction Dynamic characteristics Experimental facility Mechanical decoupling
其他题名永磁电动式磁悬浮的研究
中文摘要永磁导体板电动式磁悬浮列车具有悬浮气隙大、轨道结构简单和性价比好的特点,但其较低浮阻比和永磁重量大对列车产生不利影响,所以有必要优化设计与研制车载永磁体,做到重量轻、磁场强、磁场谐波小和可靠性好,同时经实验验证能改善磁浮列车性能和提高浮阻比。 我们的工作包括四个方面。首先在磁体优化设计方面,通过改变Halbach磁体的磁块长度、宽度和磁化矢量方向,力求用最少的永磁材料得到更强的磁场,改善磁性材料利用率。通过研究得到了优化的磁块长度;定义和计算合理的磁块宽度,得到了较大的磁场水平分量;优化磁化矢量方向,进一步提高了磁场的水平分量。研制并测试了4组模型磁体,验证上述优化设计的正确性。第二,分析电动式磁悬浮特性。在合理假设的基础上,建立简化的二维模型,由电磁场方程用解析法得到悬浮力、磁阻力和浮阻比的速度特性,并同Ansoft仿真、实验实测结果进行比较。第三,设计和建造了实验装置。构造特殊机械结构实现机械解耦(直线导轨和力传感器来测试悬浮力,扭矩传感器来测试磁阻力),自动采集和处理数据。最后,进行了实验研究。更换3组磁体和2个导体板,调整气隙高度,在不同速度下测定了悬浮力和磁阻力,研究磁体优化对磁悬浮性能的影响和磁悬浮系统的规律。 研究结果表明,对8模块Halbach磁体的优化和设计,得到了优化的磁块长度解析表达式( )、磁块宽度和磁化矢量的优化结果,模型磁体的研制和测试表明优化设计正确。电动式磁悬浮系统二维模型分析和实验装置实测结果吻合。建造了旋转实验装置,实验结果证明磁体的优化设计能够改善磁悬浮系统的性能,提高浮阻比,并进行了磁悬浮性能的实验研究。 EDS maglev can get larger levitation gap with permanent magnet, it has a simpler structure and higher manetic field with good economical performance. It’s disadvantages are lower L/D(the lift-to-drag) ratio and high weight, so it is important to optimize the magnet to get higher magnetic field, less harmonic components and good reliability to improve quality of maglev vehicles with less permanent magnetic material. Our study consists of four parts.Firstly, PM magnets are optimized and designed in order to get higher magnetic field with less permanent magnetic material by means of changing length, width and magnetization directions of the modules. Through study, the optimal length of the modules is obtained, the rational width of modules is proposed and calculated to get higher horizontal components of magnetic field, and the magnetization directions are also optimized to get more higher horizontal components. 4 linear Halbach model magnets were designed, manufactured and tested in laboratory to verify all above optimizations and designs. Secondly, EDS characteristics with permanent magnets are analysed with rational assumptions, a simplified two-dimensional model is established to deduce lift and drag forces and L/D(Lift/Drag) ratio expressions with velocities from Maxwell equations, Comp- arisons are presented among the analytical results, Ansoft and experiments. Thirdly, an experimental facility is designed and manufactured. A special mechanism is made to decouple electromagnetic forces into lift and drag(drag by torque sensor, lift by linear bearing and load cell), data are sampled and processed automatically. Lastly, experimental study was performed in different conditions: 3 magnets and 2 conducting sheets were changed, gap was regulated, lift and drag forces were measured at different velocities. Velocity characteristics of lift and drag are analysed to verify that optimized magnets can improve performances of maglev, and to get better vehicle characteristics. The results show that for 8-piece Halbach magnet, the optimized module length can be defined as , the module width and magnetization directions can be also optimized, the design, manufacturing and measurement of the 4 modle magnets verify the correctness of the study. The EDS performance analyses by two-dimensional modle are consistent with the results from experimental measure- ment in laboratory. Experimental facility was made for study, the results verify that the optimized magnets can improve maglev performance and increase L/D ratio. All above are necessary for further maglev projects.
语种中文
公开日期2010-10-18
页码139
分类号TM1
内容类型学位论文
源URL[http://ir.iee.ac.cn/handle/311042/6710]  
专题电工研究所_其他部门_其他部门_博士学位论文
推荐引用方式
GB/T 7714
1李春生,电工研究所. 永磁电动式磁悬浮的研究, 永磁电动式磁悬浮的研究[D]. 中国科学院电工研究所. 2007.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace