题名一维周期性光学薄膜的紫外超材料性质研究
作者赵晶晶
学位类别硕士
答辩日期2015-05
授予单位中国科学院大学
导师高劲松
关键词超材料 金属 电介质 紫外 负折射 聚焦
其他题名Study on the Ultraviolet Metamaterial Properties of One Dimensional Periodic Optical Thin Films
学位专业光学
中文摘要近10年超材料如雨后春笋在世界各地蓬勃发展成为最新的研究热点之一。超材料是一种人工合成的,在自然界尚不存在的复合材料。它们拥有可以改变电磁波传输的特殊性质,比如负折射、超分辨率成像(突破衍射极限)、平板透镜聚焦等等。这些特殊性质在传统材料里是无法实现甚至未曾想象过的,因此,超材料的诞生引起了人们极大的研究兴趣。 超材料由具有不同光学性质的材料通过现代材料微加工工艺整合而成,因为其不同成分的材料的周期性变化的特征尺寸远小于与之作用的波长,所以超材料的宏观上表现出连续均匀的光学性质。理论研究上人们发展出了等效介质等理论,一定程度上很好的解释了超材料不同寻常的相对介电常数和磁导率等。因为超材料要求其内部不同成分的材料的周期性变化的特征尺寸远远小于其工作波长,所以超材料在微加工技术方面给人们提出了很高要求。工作波长越小,材料的特征尺寸也就要越小,加工难度就越大。目前,微波、红外甚至可见光波段的超材料已经在实验上成功的实现。然而随着半导体工业发展不断追求小型化,电子工业不断缩小集成电路尺寸,以及微机电系统等的发展,人们迫切希望获得工作波长更短的超材料去操纵紫外甚至深紫外光,实现紫外光刻等微加工技术手段。但是工作于此波段范围的超材料却面临加工难度大的发展瓶颈。 本论文主要研究了工作在紫外和深紫外波段的超材料。设计了基于一维周期性多层薄膜结构的超材料,其可以方便地用现代成熟的薄膜沉积技术制得,解决了二维,三维超材料在加工技术上遇到的问题。根据有效介质理论,提出了一维周期性Ag/SiO2多层膜结构,实现了326 nm 到342 nm波长范围的负折射,同时通过理论分析和仿真模拟展示了该负折射超材料对紫外波长的点光源的超分辨率成像以及对紫外波长的平行光的聚焦效应。此外,根据传输矩阵法设计出一维周期性Al/Al2O3多层膜结构实现了深紫外波段相对介电常数趋于零(ENZ)的超材料,通过调整金属填充率和单元层厚度,实现了ENZ波长从140 nm到240 nm连续可调。同时通过理论分析和仿真模拟展示了该ENZ超材料的定向发射、相前塑形和电场加强等光学特性,并实现了利用ENZ超材料进行平板聚焦。
英文摘要In the latest decade, the research on metamaterial has been sprouting our all over the world, becoming one of the hottest research topics to date. Metamaterial is a kind of artificial compound material that doesn’t exist in nature. They have the special capability to change the transportation of electromagnetic wave, with effect such as negative refraction, supper resolution (breaking the diffraction limit), planar focusing, etc. Those fancy properties have never been envisioned in traditional materials. Therefore, the birth of metamaterial has raised the huge research interests of people. Metamaterial is fabricated by combining materials with different optical properties through modern material micro-processing techniques. Because the feature size of periodic variation of materials with different property is far smaller than the wavelength to which the metamaterial is applied, metamaterial behave like a bulk material with continuous optical property. In this regard, people have developed theories such as effective medium theory (EMT), which to an extent satisfactorily explained the unique permeability and permittivity of metamaterials. Because the feature size of periodicity in metamaterial should be far smaller than the wavelength, it places a stringent requirement on fabrication techniques for people. The shorter the wavelength, the smaller the feature size of metamaterial, the harder the fabrication process. To date, metamaterials for microwave, infrared, and even visible light have been realized in lab. However, as the electric industry has been pursuing smaller and smaller feature size and the development of integrated circuit and micro-electrical-mechanical system, people desire metamaterial to manipulate ultraviolet (UV) and even deep UV light, to realize techniques such as deep UV photolithography. However, fabricating metamaterials for such short wavelength faces even severe problem. In this dissertation, the metamaterial for UV and deep UV light have been studied. An one dimensional periodic multilayer structure has been proposed, which can be readily fabricated by the mature thin film deposition techniques, partially solving the problem for making two or three dimensional metamaterials. According to EMT, a one dimensional periodic Ag/SiO2 multilayer structure has been proposed and negative refraction has been realized by this structure from 326 nm to 342 nm. By theoretical analysis and simulation, its super-resolution imaging and focusing properties have been demonstrated. In addition, a one dimensional periodic Al/Al2O3 multilayer structure has been proposed by transmission matrix method (TMD), whose epsilon can be tuned to near zero, i.e. the so called epsilon near zero (ENZ) metamaterial. By changing the filling ratio of metal or the thickness of periodic element, the ENZ wavelength can be continuously tuned from 140 nm to 240 nm. By theoretical analysis and simulation, the features of directional emission, phase shaping and electric field enhancement of ENZ metamaterial have been demonstrated, and a method to realize planar focusing by ENZ metamaterial has been proposed.
公开日期2015-12-24
内容类型学位论文
源URL[http://ir.ciomp.ac.cn/handle/181722/48962]  
专题长春光学精密机械与物理研究所_中科院长春光机所知识产出
推荐引用方式
GB/T 7714
赵晶晶. 一维周期性光学薄膜的紫外超材料性质研究[D]. 中国科学院大学. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace