On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction
Zhang, Qiang1,2,5; Zhang, Peiran1,2; Su, Yetian1,2; Mou, Chunbo5; Zhou, Teng6; Yang, Menglong3,4; Xu, Jian1,2; Ma, Bo1,2
刊名LAB ON A CHIP
2014
卷号14期号:24页码:4599-4603
英文摘要A simple, low-cost and on-demand microfluidic flow controlling platform was developed based on a unique capillary-tuned solenoid microvalve suction effect without any outer pressure source. The suction effect was innovatively employed as a stable and controllable driving force for the manipulation of the microfluidic system by connecting a piece of capillary between the microvalve and the microfluidic chip, which caused significant hydrodynamic resistance differences among the solenoid valve ports and changed the flowing mode inside the valve. The volume of sucked liquid could be controlled from microliters even down to picoliters either by decreasing the valve energized duration (from a maximum energized duration to the valve response time of 20 ms) or by increasing the inserted capillary length (i.e., its hydrodynamic resistance). Several important microfluidic unit operations such as cell/droplet sorting and on-demand size-controllable droplet generation have been demonstrated on the developed platform and both simulations and experiments confirmed that this platform has good controllability and stability.
WOS标题词Science & Technology ; Life Sciences & Biomedicine ; Physical Sciences
类目[WOS]Biochemical Research Methods ; Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology
研究领域[WOS]Biochemistry & Molecular Biology ; Chemistry ; Science & Technology - Other Topics
关键词[WOS]SURFACE ACOUSTIC-WAVES ; GENERATION ; CELLS ; DROPLETS ; SYSTEMS ; DEVICE ; SORTER
收录类别SCI
语种英语
WOS记录号WOS:000345065700004
公开日期2015-12-24
内容类型期刊论文
源URL[http://ir.qibebt.ac.cn/handle/337004/6280]  
专题青岛生物能源与过程研究所_单细胞中心
作者单位1.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Single Cell Ctr, CAS Key Lab Biofuels, Qingdao, Peoples R China
2.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Shandong Key Lab Energy Genet, Qingdao, Peoples R China
3.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Publ Lab, Qingdao, Peoples R China
4.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, CAS Key Lab Biofuels, Qingdao, Peoples R China
5.Qingdao Univ, Coll Chem Sci & Engn, Qingdao 266071, Peoples R China
6.Yeungnam Univ, Sch Mech Engn, Gyongsan, South Korea
推荐引用方式
GB/T 7714
Zhang, Qiang,Zhang, Peiran,Su, Yetian,et al. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction[J]. LAB ON A CHIP,2014,14(24):4599-4603.
APA Zhang, Qiang.,Zhang, Peiran.,Su, Yetian.,Mou, Chunbo.,Zhou, Teng.,...&Ma, Bo.(2014).On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction.LAB ON A CHIP,14(24),4599-4603.
MLA Zhang, Qiang,et al."On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction".LAB ON A CHIP 14.24(2014):4599-4603.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace